Skip to main content
Log in

Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The residual cellulose of wood processing waste, sawdust, which was leftover after sequential hot-water extraction processes to isolate hemicelluloses and lignin in a novel forest biorefinery concept, was explored as the starting material for preparation of a highly value-added polymeric material, nanofibrillated cellulose (NFC) also widely termed as cellulose nanofiber, which has provided an alternative efficient way to upgrade sawdust waste. The residual cellulose in sawdust was converted to a transparent NFC suspension in water through the 2,2,6,6-tetramethylpiperidine-1-oxyl radical/NaClO/NaBr oxidization approach. The resultant NFC with a dimension of ca. 5 nm in width and hundreds of nanometers in length were further processed into NFC films. The morphological features of the NFC suspension and its films were assessed by transmission electron microscopy and scanning electron microscopy. Highly even dispersion of NFC fibrils in the films originated from sawdust feasibly contributes to the outstanding mechanical performance of the films. NFC suspension with higher carboxylate content and its resultant NFC films were found to show higher transmission of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  CAS  Google Scholar 

  • Benhamou K, Dufresne A, Magninc A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83

    Article  CAS  Google Scholar 

  • Blot WJ (1997) Wood dust and nasal cancer risk. A review of the evidence from North America. J Occup Environ Med 39(2):148–156

    Article  CAS  Google Scholar 

  • Borrega M, Tolonen LK, Bardot F, Testova L, Sixta H (2012) Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. Bioresour Technol 135:665–671

    Article  Google Scholar 

  • Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325(1–2):44–51

    Article  CAS  Google Scholar 

  • Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67(5):829–839

    Article  CAS  Google Scholar 

  • Demers PA, Boffetta P, Kogevinas M, Blair A, Miller BA, Robinson CF, Roscoe RJ, Winter PD, Colin D, Matos E, Vainio H (1995) Pooled reanalysis of cancer mortality among five cohorts of workers in wood-related industries. Scand J Work Environ Health 21(3):179–190

    Article  CAS  Google Scholar 

  • Ebringerová A, Hromádková Z, Hříbalová V, Xu CL, Holmbom B, Sundberg A, Willför S (2008) Norway spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. Int J Biol Macromol 42(1):1–5

    Article  Google Scholar 

  • Eurostat (2013) http://epp.eurostat.ec.europa.eu/portal/page/portal/forestry/introduction. Accessed Jan 2013

  • Evans R, Wallis AFA (1989) Cellulose molecular weight determined by viscosity. J Appl Polym Sci 37:2331–2340

    Article  CAS  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101(23):8915–8922

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2012) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Liu AD, Berglund LA (2012) Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers—improvements due to chitosan addition. Carbohydr Polym 87(1):53–60

    Article  CAS  Google Scholar 

  • Liu J, Hu HR, Xu JF, Wen YB (2012a) Optimizing enzymatic pretreatment of recycled fiber to improve its draining ability using response surface methodology. BioResources 7(2):2121–2140

    CAS  Google Scholar 

  • Liu SJ, Lu HF, Hu RF, Shupe A, Lin L, Liang B (2012b) A sustainable woody biomass biorefinery. Biotechnol Adv 30(4):785–810

    Article  CAS  Google Scholar 

  • Loureiro PEG, Domingues EF, Evtuguin DV, Graça Videira Sousa Carvalho M (2010) ECF bleaching with a final hydrogen peroxide stage: impact on the chemical composition of eucalyptus globulus kraft pulps. BioResources 5(4):2567–2580

    Google Scholar 

  • Mikkonen KS, Stevanic J, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18(3):713–726

    Article  CAS  Google Scholar 

  • Mikkonen KS, Pitkänen L, Liljeström V, Bergström EM, Serimaa R, Salmén L, Tenkanen M (2012a) Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose. Cellulose 19(2):467–480

    Article  CAS  Google Scholar 

  • Mikkonen KS, Heikkilä M, Willför S, Tenkanen M (2012b) Films from glyoxal-crosslinked spruce galactoglucomannans plasticized with sorbitol. Int J Polym Sci. doi:10.1155/2012/482810

  • Nechwatal A, Mieck KP, Reusmann T (2003) Developments in the characterization of natural fibre properties and in the use of natural fibres for composites. Compos Sci Technol 63(9):1273–1279

    Article  CAS  Google Scholar 

  • Ohara H (2003) Biorefinery. Appl Microbiol Biotechnol 62(5–6):474–477

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63(5):529–535

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-medoated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nanosized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  • Song T, Pranovich A, Holmbom B (2011) Effects of pH control with phthalate buffers on hot-water extraction of hemicelluloses from spruce wood. Bioresour Technol 102(22):10518–10523

    Article  CAS  Google Scholar 

  • Tatrai E, Adamis Z, Bohm U, Meretey K, Ungvary G (1995) Role of cellulose in wood dust-induced fibrosing alveo-bronchiolitis in rat. J Appl Toxicol 15(1):45–48

    Article  CAS  Google Scholar 

  • Weber S, Kullman G, Petsonk E, Jones WG, Olenchock S, Sorenson W, Parker J, Marcelo-Baciu R, Frazer D, Castranova V (1993) Organic dust exposures from compost handling: case presentation and respiratory exposure assessment. Am J Ind Med 24(4):365–374

    Article  CAS  Google Scholar 

  • Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the China Scholarship Council. We thank Dr. Jan Gustafsson for access to the FiberLab instrument. Prof. Maija Tenkanen at the University of Helsinki is gratefully acknowledged for valuable discussions. Chunlin Xu also thanks the Knut and Alice Wallenberg Foundation for financial support via the KTH Wallenberg Wood Science Center. This work was also part of the activities at the Åbo Akademi Process Chemistry Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Korpinen, R., Mikkonen, K.S. et al. Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose 21, 2587–2598 (2014). https://doi.org/10.1007/s10570-014-0321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0321-4

Keywords

Navigation