Skip to main content
Log in

Two-dimensional Rietveld analysis of celluloses from higher plants

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The Rietveld method is a versatile tool to parameterize the fine structure of crystallites analyzed by diffraction. The method relies on a crystallographic model representing what is known a priori, and free coefficients determined from fits to experimental data. This article provides an introduction to Rietveld analysis of celluloses from higher plants that are adequately described by the cellulose Iβ crystal structure. Possibilities of Rietveld analysis have been recently enhanced by a tailored crystallographic model and computational algorithm, named Cellulose Rietveld Analysis for Fine Structure (CRAFS). From each two-dimensional diffraction pattern, CRAFS automated analysis outputs unit cell parameters, crystallite sizes, peak profile functions, integrated crystalline intensity (proportional to cellulose degree of crystallinity), and crystallite orientation distribution function. Two of the major hurdles for analysis of plant cellulose—overlapping of diffraction peaks and preferred crystallite orientation—are consistently treated by the two-dimensional Rietveld analysis. Hence, the method is a unique tool to explore cellulose fine structural variability, with differences arising from specimen conditioning, processing, and biological origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338

    Article  CAS  Google Scholar 

  • Bunge H (1993) Texture analysis in materials science: mathematical methods. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893

    Article  CAS  Google Scholar 

  • Delhez R, Mittemeijer EJ, De Keijser TH, Rozendaal HCF (1977) Correction for the angle dependence of Lorentz, polarization and structure factors in x-ray diffraction line profiles. J Phys E: Sci Instrum 10:784–785

    Article  Google Scholar 

  • Delhez R, de Keijser TH, Langford JI, Louër D, Mittemeijer EJ, Sonneveld EJ (1993) Crystal imperfection broadening and peak shape in the Rietveld Method. In: Young RA (ed) The Rietveld method. Oxford University Press, New York, pp 132–166

    Google Scholar 

  • Driemeier C, Bragatto J (2013) Crystallite width determines monolayer hydration across a wide spectrum of celluloses isolated from plants. J Phys Chem B 117:415–421

    Article  CAS  Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192

    Article  CAS  Google Scholar 

  • Driemeier C, Pimenta MTB, Rocha GJM et al (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18:1509–1519

    Article  CAS  Google Scholar 

  • Driemeier C, Santos WD, Buckeridge MS (2012) Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability. Cellulose 19:1507–1515

    Article  CAS  Google Scholar 

  • Ferrari M, Lutterotti L (1994) Method for the simultaneous determination of anisotropic residual stresses and texture by X-ray diffraction. J Appl Phys 76:7246–7255

    Article  CAS  Google Scholar 

  • Hammersley AP (2005) FIT2D. ESFR, Grenoble, France. (http://www.esrf.eu/computing/scientific/FIT2D/)

  • Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484

    Article  CAS  Google Scholar 

  • Hosemann R (1950) Der ideale Parakristall und die von ihm gestreute kohärente Röntgenstrahlung. Zeitschrift für Physik 128:465–492

    Article  CAS  Google Scholar 

  • Hosemann R, Hindeleh AM (1995) Structure of crystalline and paracrystalline condensed matter. J Macromol Sci B Phys 34:327–356

    Article  Google Scholar 

  • Ioelovitch M (1992) Zur übermolekularen Struktur von nativen und isolierten Cellulosen. Acta Polym 43:110–113

    Article  CAS  Google Scholar 

  • Keckes J, Burgert I, Frühmann K et al (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810–814

    Article  CAS  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102–113

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M et al (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336

    Article  CAS  Google Scholar 

  • Okano T, Koyanagi A (1986) Structural variation of native cellulose related to its source. Biopolymers 25:851–861

    Article  CAS  Google Scholar 

  • Oliveira R, Driemeier C (2013) CRAFS: a model to analyze two-dimensional X-ray diffraction patterns of plant cellulose. J Appl Cryst. doi:10.1107/S0021889813014805

  • Revol J-F, Gancet C, Goring DAI (1982) Orientation of cellulose crystallites in the S2 layer of spruce and birch wood cell walls. Wood Sci 14:120–126

    CAS  Google Scholar 

  • Rietveld HM (1967) Line profile of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22:151–152

    Article  CAS  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  CAS  Google Scholar 

  • Roe R-J (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, New York

    Google Scholar 

  • Simonović J, Stevanic J, Djikanović D et al (2011) Anisotropy of cell wall polymers in branches of hardwood and softwood: a polarized FTIR study. Cellulose 18:1433–1440

    Article  CAS  Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Berlin

    Book  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Viëtor RJ, Newman RH, Ha M-A et al (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731

    Article  Google Scholar 

  • Von Dreele RB (1997) Quantitative texture analysis by Rietveld refinement. J Appl Cryst 30:517–525

    Article  Google Scholar 

  • Warren BE (1990) X-ray diffraction. Dover, New York

    Google Scholar 

  • Warren BE, Averbach BL (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21:595–599

    Article  CAS  Google Scholar 

  • Welberry TR, Miller GH, Carroll CE (1980) Paracrystals and growth-disorder models. Acta Cryst A 36:921–929

    Article  Google Scholar 

  • Yinghua W (1987) Lorentz-polarization factor for correction of diffraction-line profiles. J Appl Cryst 20:258–259

    Article  CAS  Google Scholar 

  • Young RA (ed) (1993) The Rietveld method. Oxford University Press, New York

    Google Scholar 

  • Zabler S, Paris O, Burgert I, Fratzl P (2010) Moisture changes in the plant cell wall force cellulose crystallites to deform. J Struct Biol 171:133–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by CNPq and FAPESP (Grant 2010/05523-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Driemeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driemeier, C. Two-dimensional Rietveld analysis of celluloses from higher plants. Cellulose 21, 1065–1073 (2014). https://doi.org/10.1007/s10570-013-9995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9995-2

Keywords

Navigation