Skip to main content
Log in

Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The unique combinations of hard and soft components with core/shell structures were proposed to synthesize high strength nanocomposite hydrogels. The elastomeric hydrogels containing rod-like cellulose nanocrystals (CNCs) core and polyacrylamide shell were made from aqueous solutions via free radical polymerization in the absence of chemical cross-links. The obtained hydrogels possessed greater tensile strength and elongation ratio when compared with chemically cross-linked counterparts. Oscillatory shear experiments indicated that CNCs interacted with polymer matrix via both chemical and physical interactions and contributed to the rubbery elasticity of the hydrogels. The nanocomposite hydrogels were more viscous than the chemical hydrogels, suggesting the addition of CNC led to the increase of energy dissipating and viscoelastic properties. The network structure model was proposed and it suggested that the high extensibilities and fracture stresses were related to the well-defined network structures with low cross-linking density and lack of noncovalent interactions among polymer chains, which may promote the rearrangements of network structure at high deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779–791

    Article  CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  CAS  Google Scholar 

  • Akagi Y, Katashima T, Katsumoto Y, Fujii K, Matsunaga T, Chung UI, Shibayama M, Sakai T (2011) Examination of the theories of rubber elasticity using an ideal polymer network. Macromolecules 44:5817–5821

    Article  CAS  Google Scholar 

  • Carlsson L, Rose S, Hourdet D, Marcellan A (2010) Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter 6:3619–3631

    Article  CAS  Google Scholar 

  • Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588

    Article  CAS  Google Scholar 

  • Das D, Kar T, Das PK (2012) Gel-nanocomposites: materials with promising applications. Soft Matter 8:2348–2365

    Article  CAS  Google Scholar 

  • Fajardo AR, Radovanovic E, Rubira AF, Muniz EC, Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463

    Article  Google Scholar 

  • Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650

    Article  CAS  Google Scholar 

  • Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hao JK, Weiss RA (2011) Viscoelastic and mechanical behavior of hydrophobically modified hydrogels. Macromolecules 44:9390–9398

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  • Hu J, Chen M, Wu LM (2010) Organic-inorganic nanocomposites synthesized via miniemulsion polymerization. Polym Chem 2:760–772

    Article  Google Scholar 

  • Hu JM, Zhang GQ, Liu SY (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev. doi:https://doi.org/10.1039/c2cs35103j

    Article  CAS  Google Scholar 

  • Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626

    Article  CAS  Google Scholar 

  • Isobe N, Sekine M, Kimura S, Wada M, Kuga S (2011) Anomalous reinforcing effects in cellulose gel-based polymeric nanocomposites. Cellulose 18:327–333

    Article  CAS  Google Scholar 

  • Joly S, Garnaud G, Ollitrault R, Bokobza L (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14:4202–4208

    Article  CAS  Google Scholar 

  • Li H, Lai FK, Luo RM (2009) Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model. Langmuir 25:13142–13150

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Nishio Y (2006) Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Adv Polym Sci 205:97–151

    Article  CAS  Google Scholar 

  • Nykänen VPS, Nykänen A, Puska MA, Silva GG, Ruokolainen J (2011) Dual-responsive and super absorbing thermally cross-linked hydrogel based on methacrylate substituted polyphosphazene. Soft Matter 7:4414–4424

    Article  Google Scholar 

  • Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487

    Article  CAS  Google Scholar 

  • Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interface 168:247–262

    Article  CAS  Google Scholar 

  • Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6:2364–2371

    Article  CAS  Google Scholar 

  • Simhadri JJ, Stretz HA, Oyanader M, Arce PE (2010) Role of nanocomposite hydrogel morphology in the electrophoretic separation of biomolecules: a review. Ind Eng Chem Res 49:11866–11877

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237

    Article  CAS  Google Scholar 

  • Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888

    Article  CAS  Google Scholar 

  • Wang T, Liu D, Lian CX, Zheng SD, Liu XX, Tong Z (2012) Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–laponite nanocomposite hydrogels. Soft Matter 8:774–783

    Article  CAS  Google Scholar 

  • Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927

    Article  CAS  Google Scholar 

  • Wu CL, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough iuronic F127/laponite nanocomposite hydrogels from covalently and physically cross-Linked networks. Macromolecules 44:8215–8224

    Article  CAS  Google Scholar 

  • Wu JJ, Zhao N, Zhang XL (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19:1239–1249

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012a) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480

    Article  CAS  Google Scholar 

  • Yang J, Gong C, Shi FK, Xie XM (2012b) High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties. J Phys Chem B 116:12038–12047

    Article  CAS  Google Scholar 

  • Yoon J, Lee KJ, Lahann J (2011) Multifunctional polymer particles with distinct compartments. J Mater Chem 21:8502–8510

    Article  CAS  Google Scholar 

  • Zhang H, Liu Y, Yao D, Yang B (2012) Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem Soc Rev. doi:https://doi.org/10.1039/c2cs35038f

    Article  CAS  Google Scholar 

  • Zhou CJ, Wu QL, Yue YY, Zhang QG (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Colloid Interface Sci 353:116–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Beijing Forestry University Young Scientist Fund (BLX2011010), Fundamental Research Funds for the Central Universities (124199, TD2011-10, YX2011-4, JD2011-2), National Natural Science Foundation of China (30901139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Han, CR., Duan, JF. et al. Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20, 227–237 (2013). https://doi.org/10.1007/s10570-012-9841-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9841-y

Keywords

Navigation