Skip to main content
Log in

Moisture sorption in developing cotton fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The moisture sorption behavior of developing cotton fibers is studied by dynamic vapor sorption. Mature fibers show a typical sigmoidal isotherm, IUPAC type II, describing the adsorption on macroporous and non-porous adsorbents with a typical hysteresis. This is different from the type III isotherms exhibited by elongating fibers explained by the weak adsorbate–adsorbent interactions. The maximum sorption capacity clearly decreases throughout the cotton fiber development. This decrease is very rapid during the elongation phase of the fibers, but declines beyond 25 days post anthesis (DPA). This transition corresponds to the time point where the secondary cell wall becomes dominant over the primary cell wall, as confirmed with FT-IR. Also only little moisture hysteresis appeared during the elongation phase whereas from 25 DPA onwards a distinct hysteresis is observed that remains almost constant until maturation of the fiber. The study clearly elucidates the sorption mechanism during the elongation phase of the fiber to be different from the one during the secondary cell wall synthesis. This improved understanding of the cotton sorption behavior is important for optimal application of cotton fiber in novel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486. doi:10.1002/app.27100

    Article  CAS  Google Scholar 

  • Abidi N, Cabrales L, Hequet E (2009) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320. doi:10.1007/s10570-009-9366-1

    Article  Google Scholar 

  • Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders: part 1: mathematical description of experimental data. J Food Eng 61:297–307. doi:10.1016/S0260-8774(03)00133-X

    Article  Google Scholar 

  • Backe EE (2002) Cotton moisture: harvesting through textile processing. Institute of Textile Technology, Charlottesville

    Google Scholar 

  • Barrer RM (1947) The solubility of gases in elastomers. Trans Faraday Soc 43:3–11. doi:10.1039/TF9474300003

    Article  CAS  Google Scholar 

  • Basra AS, Malik CP (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113

    Article  CAS  Google Scholar 

  • Bradbury JH (1963) Sorption of liquids by wool. Part III. Accessibility of wool to sorbates. J Appl Polym Sci 7:557–568. doi:10.1002/app.1963.070070213

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • French AD, Goyner WR, Rouselle MS, Thibodeaux DP (2004) Cotton fiber and moisture-some of the basics. In: Proceedings of the national cotton council beltwide cotton conference, 5–9 Jan, San Antonio, TX, pp 2990–2994

  • Goynes WR, Ingber BF, Triplett BA (1995) Cotton fiber secondary wall development-time versus thickness. Text Res J 65:400–408. doi:10.1177/004051759506500705

    Article  CAS  Google Scholar 

  • Hailwood AJ, Horrobin S (1946) Absorption of water by polymers: analysis in terms of a simple model. Trans Faraday Soc 42:B084–B092. doi:10.1039/TF946420B084

    Article  Google Scholar 

  • Hartzell-Lawson MM, Hsieh YL (2000) Characterizing the non-cellulosics in developing cotton fibers. Text Res J 70:810–819. doi:10.1177/004051750007000909

    Article  CAS  Google Scholar 

  • Hellman NN, Melvin EH (1950) Surface area of starch and its role in water sorption. J Am Chem Soc 72:5186–5188. doi:10.1021/ja01167a110

    Article  CAS  Google Scholar 

  • Hill TL (1950) Statistical mechanics of adsorption. X. Thermodynamics of adsorption on an elastic adsorbent. J Chem Phys 18:791–797. doi:10.1063/1.1747777

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. doi:10.1002/app.29725

    Article  CAS  Google Scholar 

  • Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514. doi:10.1007/s00226-010-0305-y

    Article  CAS  Google Scholar 

  • Kachrimanis K, Noisternig MF, Griesser UJ, Malamataris S (2006) Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose. Eur J Pharm Biopharm 64:307–315. doi:10.1016/j.ejpb.2006.05.019

    Article  CAS  Google Scholar 

  • Kohler R, Ausperger B (2003) A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers. Compos Interfaces 10:255–276. doi:10.1163/156855403765826900

    Article  CAS  Google Scholar 

  • Kohler R, Alex R, Brielmann R, Ausperger B (2006) A new kinetic model for water sorption isotherms of cellulosic materials. Macromol Symp 244:89–96. doi:10.1002/masy.200651208

    Article  CAS  Google Scholar 

  • Lu Y, Pignatello JJ (2002) Demonstration of the ‘conditioning effect’ in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ Sci Technol 36:4553–4561. doi:10.1021/es020554x

    Article  CAS  Google Scholar 

  • Lu Y, Pignatello JJ (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ Sci Technol 38:5853–5862. doi:10.1021/es049774w

    Article  CAS  Google Scholar 

  • Markova N, Sparr E, Wadsà L (2001) On application of an isothermal sorption microcalorimeter. Thermochim Acta 374:93–104. doi:10.1016/S0040-6031(01)00476-2

    Article  CAS  Google Scholar 

  • Maxwell JM, Huson MG (2002) Using the scanning probe microscope to measure the effect of relative humidity on sample stiffness. Rev Sci Instrum 73:3520–3524. doi:10.1063/1.1505663

    Article  CAS  Google Scholar 

  • Maxwell JM, Gordon SG, Huson MG (2003) Internal structure of mature and immature cotton fibers revealed by scanning probe microscopy. Text Res J 73:1005–1012. doi:10.1177/004051750307301111

    Article  CAS  Google Scholar 

  • Meinert MC, Delmer DP (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59:1088–1097. doi:10.1104/pp.59.6.1088

    Article  CAS  Google Scholar 

  • Mizutani C, Inagaki H, Bertoniere NR (1999) Water absorbancy of never-dried cotton fibers. Cellulose 6:167–176. doi:10.1023/A:1009223516957

    Article  CAS  Google Scholar 

  • Moharir AV, Bodas M, Vashisth A (2003) Rate and amount of cellulose synthesis in developing fibers of Gossypium arboreum and Gossypium hirsutum cotton. J Appl Polym Sci 90:1453–1462. doi:10.1002/app.12542

    Article  CAS  Google Scholar 

  • Nam-tran H, Nhuan VV, Buchmann M, Sabra F, Ruelle P, Kesselring U (1993) Adsorption isotherms of water on a set of fractosils and on Avicel PH 101R by frontal analysis chromatography. Drug Dev Ind Pharm 19:1413–1445. doi:10.3109/03639049309047183

    Article  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58:293–299. doi:10.1016/j.carbpol.2004.07.004

    Article  CAS  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2005) Moisture sorption/desorption behavior of various manmade cellulosic fibers. J Appl Polym Sci 97:1621–1625. doi:10.1002/app.21871

    Article  CAS  Google Scholar 

  • Paes SS, Sun S, MacNaughtan N, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709. doi:10.1007/s10570-010-9425-7

    Article  CAS  Google Scholar 

  • Rousselle MA, French AD (2006) Moisture and maturity relationships in cotton fiber: comparison of several cultivars grown in MS and GA in 2003. In: Proceedings of the national cotton council beltwide cotton conference, 3–6 Jan, Texas, pp 2378–2382

  • Rousselle MA, Thibodeaux DP (2006) Cotton fiber properties and moisture: influence of variety, area of growth, and crop year. Text Res J 76:655–659. doi:10.1177/0040517506067665

    Article  CAS  Google Scholar 

  • Rousselle M, French A, Thibodeaux D (2004) Effect of cultivar and area of growth on moisture properties of cotton fiber. In: Proceedings of the national cotton council beltwide cotton conference, 5–9 Jan, San Antonio, TX, pp 2941–2944

  • Rousselle MA, Thibodeaux DP, French AD (2005) Cotton fiber properties and moisture: water of imbibition. Text Res J 75:177–180. doi:10.1177/004051750507500217

    Article  CAS  Google Scholar 

  • Sangwichien C, Aranovich GL, Donohue MD (2002) Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids Surf A 206:313–320. doi:16/S0927-7757(02)00048-1

    Article  CAS  Google Scholar 

  • Siau JF (1983) A proposed theory for nonisothermal unsteady-state transport of moisture in wood. Wood Sci Technol 17:75–77. doi:10.1007/BF00351834

    Article  Google Scholar 

  • Skaar C (1972) Water in wood, 1st edn. Syracuse University Press, Syracuse

    Google Scholar 

  • Szcześniak L, Rachocki A, Tritt-Goc J (2007) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451. doi:10.1007/s10570-007-9192-2

    Article  Google Scholar 

  • Taylor JB (1954) Sorption of water by soda boiled cotton at low humidities and some comparison with viscose rayon. J Tex Inst 45:642–645

    Google Scholar 

  • Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T (2002) Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development. Plant Cell Physiol 43:411–418. doi:10.1093/pcp/pcf048

    Article  CAS  Google Scholar 

  • Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277. doi:10.1007/BF00349758

    Article  CAS  Google Scholar 

  • Watt IC, D’Arcy RL (1976) Hydration of biopolymers. J Polym Sci Polym Symp 55:155–166. doi:10.1002/polc.5070550117

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Jalaludin Z, Curling SF, Anandjiwala RD, Norton AJ, Newman G (2010a) The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46:479–489. doi:10.1007/s10853-010-4935-0

    Article  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Jalaludin Z, Militz H, Mai C (2010b) Water vapor sorption kinetics of wood modified with glutaraldehyde. J Appl Polym Sci 117:1674–1682. doi:10.1002/app.32054

    CAS  Google Scholar 

  • Xie Y, Hill CAS, Jalaludin Z, Sun D (2011) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin-Voigt viscoelastic model. Cellulose 18:517–530. doi:10.1007/s10570-011-9512-4

    Article  CAS  Google Scholar 

  • Yasuda R, Minato K, Norimoto M (1994) Chemical modification of wood by non-formaldehyde cross-linking reagents. Wood Sci Technol 28:209–218. doi:10.1007/BF00193329

    CAS  Google Scholar 

  • Young JH, Nelson GH (1967) Theory of hysteresis between sorption and desorption isotherms in biological materials. Trans Am Soc Agric Eng 10:260–263

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) [project number IWT090505].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen De Clerck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceylan, Ö., Van Landuyt, L., Meulewaeter, F. et al. Moisture sorption in developing cotton fibers. Cellulose 19, 1517–1526 (2012). https://doi.org/10.1007/s10570-012-9737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9737-x

Keywords

Navigation