Skip to main content
Log in

Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Polymer nanocomposites were prepared from poly(oxyethylene) PEO as the matrix and high aspect ratio cellulose whiskers as the reinforcing phase. Nanocomposite films were obtained either by extrusion or by casting/evaporation process. Resulting films were characterized using microscopies, differential scanning calorimetry, thermogravimetry and mechanical and rheological analyses. A thermal stabilization of the modulus of the cast/evaporated nanocomposite films for temperatures higher than the PEO melting temperature was reported. This behavior was ascribed to the formation of a rigid cellulosic network within the matrix. The rheological characterization showed that nanocomposite films have the typical behavior of solid materials. For extruded films, the reinforcing effect of whiskers is dramatically reduced, suggesting the absence of a strong mechanical network or at least, the presence of a weak whiskers percolating network. Rheological, mechanical and microscopy studies were involved in order to explain this behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alvarez V, Terenzi A, Kenny JM, Vazquez A (2004) Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polym Eng Sci 44:1907–1914

    Article  CAS  Google Scholar 

  • Anglés MN, Dufresne A (2000) Plasticized/tunicin whiskers nanocomposites materials. 1. Structural analysis. Macromolecules 33:8344–8353

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez J-Y, Dufresne A (2004a) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004b) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005a) A review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Azizi Samir MAS, Chazeau L, Alloin F, Cavaillé J-Y, Dufresne A, Sanchez J-Y (2005b) POE based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903

    Article  CAS  Google Scholar 

  • Bengtsson M, Le Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fiber-polypropylene composites. Compos Part A 38:1922–1931

    Article  Google Scholar 

  • Bondeson D, Oksman K (2007) Whisker nanocomposites modified by polyvinyl alcohol. Compos Part A 38:2486–2492

    Article  Google Scholar 

  • Bossard F, El Kissi N, D’Aprea A, Alloin F, Sanchez J-Y, Dufresne A (2010) Influence of turbulent flow on rheological properties of aqueous solutions of high molecular weight PEO. Rheol Acta 49:529–540

    Article  CAS  Google Scholar 

  • Bras J, Viet D, Bruzzese C, Dufresne A (2010) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym (in press). doi:10.1016/j.carbpol.2010.11.022

  • Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci Part A-2 7:1761–1773

    Article  CAS  Google Scholar 

  • Cameron GG, Ingram MD, Qureshi MY, Gearing HM, Costa L, Camino G (1989) The thermal degradation of poly(ethylene oxide) and its complex with NaCNS. Eur Polym J 25:779–784

    Article  CAS  Google Scholar 

  • Chauvin C, Ollivrin X, Alloin F, Le Nest J-F, Sanchez J-Y (2005) Lithium salts based on oligoether sulfate esters. Electrochim Acta 50:3843–3852

    Article  CAS  Google Scholar 

  • Chauvin C, Alloin F, Iojoiu C, Sanchez J-Y (2006) New polymer electrolytes based on ether sulfate anions for lithium polymer batteries. Part I: multifunctional ionomers: conductivity and electrochemical stability. Electrochim Acta 51:5876–5884

    Article  CAS  Google Scholar 

  • Costa L, Gad AM, Camino G, Cameron GG, Qureshi MY (1992) Thermal and thermooxidative degradation of poly(ethylene oxide)-metal salt complexes. Macromolecules 25:5512–5518

    Article  CAS  Google Scholar 

  • De Gennes PG (ed) (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, p 223

    Google Scholar 

  • De Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whisker reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  Google Scholar 

  • Dufresne A, Cavaillé J-Y, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaillé J-Y, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposites from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Shrivastava SC, Cavaillé J-Y (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  CAS  Google Scholar 

  • Flory PI (ed) (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, p 495

    Google Scholar 

  • Grassie N, Mendoza GAP (1985) Thermal degradation of polyether-urethanes: part 2—influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly(ethylene glycol). Polym Degrad Stab 10:43–54

    Article  CAS  Google Scholar 

  • Guo YQ, Liang XH (1999) The miscibility of cellulose-polyethylene glycol blends. J Macromol Sci B 38:439–447

    Article  Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharides nanocrystals. Biomacromolecule 9:1974–1980

    Article  CAS  Google Scholar 

  • Habibi Y, Foulon L, Aguie-Beghin V, Molinari M, Douillard RJ (2007) Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization. Colloid Interface Sci 316:388–397

    Article  CAS  Google Scholar 

  • Julien S, Chornet E, Overend RP (1993) Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. J Anal Appl Pyrolysis 27:25–43

    Article  CAS  Google Scholar 

  • Khan MS (2006) Aggregate formation in poly(ethylene oxide) solutions. J Appl Polym Sci 102:2578–2583

    Article  CAS  Google Scholar 

  • Kim DY, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8:29–33

    Article  CAS  Google Scholar 

  • Kvien S, Oksman K (2007) Orientation of cellulose nanowhiskers in polyvinyl alcohol (PVA). Appl Phys A 87:641–643

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  • Panaitescu DM, Vuluga DM, Paven H, Iorga MD, Ghiurea M, Matasaru I, Nechita P (2008) Properties of polymer composites with cellulose microfibrils. Mol Cryst Liq Cryst 484:86–98

    Article  CAS  Google Scholar 

  • Parks EJ (1971) Thermal analysis of modified cellulose. J Tappi 54:537–544

    CAS  Google Scholar 

  • Pathi S, Jayaraman K (2006) Effects of extrusion on fiber length in sisal fiber-reinforced polypropylene composites. Int J Mod Phys B 20:4607–4612

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942

    Article  CAS  Google Scholar 

  • Takayanagi M, Uemura S, Minami S (1964) Application of equivalent model method to dynamic rheo-optical properties of a crystalline polymer. J Polym Sci Part C 5:113–122

    Google Scholar 

  • Tang WK, Neill WK (1964) Effect of flame retardants on pyrolysis and combustion of α-cellulose. J Polym Sci Part C 6:65–79

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Youssef Habibi for his support in the whiskers preparation and Mme Denise Foscallo for TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fannie Alloin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alloin, F., D’Aprea, A., Dufresne, A. et al. Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18, 957–973 (2011). https://doi.org/10.1007/s10570-011-9543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9543-x

Keywords

Navigation