Skip to main content
Log in

Simple, expedient methods for the determination of water and electrolyte contents of cellulose solvent systems

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The concentrations of water, W, and electrolytes present in solutions of LiCl in N,N-dimethylacetamide, LiCl/DMAc, and of tetrabutylammonium fluoride. x-hydrate in DMSO, TBAF.xW/DMSO can be accurately and expediently determined by three independent methods, UV–vis, FTIR and EMF measurement. The first relies on the use of solvatochromic probes whose spectra are sensitive to solution composition. It is applicable to W/LiCl/DMAc solutions but not to TBAF.xW/DMSO, because the charge-transfer complex bands of the probes are suppressed by strong interactions with the latter electrolyte. Integration of νOH band of water may be employed in order to determine [W], hence [electrolyte] by weight difference. EMF measurement uses ion-selective electrodes in order to determine [electrolyte], hence [W] by weight difference. Results of the latter method were in excellent agreement with those of FTIR. The reason for the failure of Karl Fischer titration is addressed, and the relevance of the results obtained to functionalization of cellulose under homogenous solution conditions is briefly commented on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abakshin V.A., Krestov G.A., Eliseeva O.V. (1987). Relationship between the relative solubility of highly associated 1–1 electrolytes and the dielectric permeability of the solvent. Zh. Obshchei Khim. 57: 1606–1609

    CAS  Google Scholar 

  • Abe Y., Mochizuki A. (2003). Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. III: the relationship between the drying condition of the membrane and its permeation behavior. J. Appl. Polym. Sci. 89: 1671–1681

    Article  CAS  Google Scholar 

  • Aichert A., De Caro C.A., Huber R. and Walter C.M. 1998. Sample preparation: a key issue in Karl Fischer titration. In: Proceedings of the 3rd International Symposium on Humidity and Moisture, Teddington UK, 141p.

  • Armarego W.F.L., Chai C.L.L. (2003). Purification of Laboratory Chemicals. Elsevier, London, fifth edition

    Google Scholar 

  • Ass B.A., Frollini E., Heinze T. (2004). Studies on the homogeneous acetylation of cellulose in the novel solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate. Macromol. Biosci. 4: 1008–1013

    Article  CAS  Google Scholar 

  • De Caro C.A., Aichert A., Walter C.A. (2001). Efficient, precise and fast water determination by the Karl Fischer titration. Food Contr. 12: 431–436

    Article  CAS  Google Scholar 

  • Casey M., Leonard J., Lygo B., Procter G. (1990). Advanced Practical Organic Chemistry. Chapman & Hall, New York, pp. 43–73

    Google Scholar 

  • Chavan R.B., Patra A.K. (2004). Development and processing of lyocell. Ind. J. Fibre Textile Res. 29: 483–492

    CAS  Google Scholar 

  • Coleman P.B. (1993). Practical Sampling Techniques for Infrared Analysis. CRC, Boca Raton, pp. 11

    Google Scholar 

  • Dawsey T.R., McCormick C.L. (1990). The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J. Macromol. Sci. – Rev. Macromol. Chem. Phys. C30:405–440

    CAS  Google Scholar 

  • Diamantoglou M., Brandner A. and Meyer G. 1984. Water-insoluble fibers from cellulose acetate, cellulose propionate and cellulose butyrate with an extremely high absorption capacity for water and physiological fluids. Ger. offen. (1984), DE 3246417 Al 19840620

  • Diamantoglou M., Vienken J. (1996). Strategies for the development of hemocompatible dialysis membranes. Macrom. Symp. 103: 31–42

    CAS  Google Scholar 

  • Dunkel R., Hahn M., Borisch K., Neumann B., Ruttinger H.-H., Tschierske C. (1998). Determination of the water content of amphiphilic liquid crystals by coulometric Karl Fischer titration. Liq. Cryst. 24: 211–213

    Article  CAS  Google Scholar 

  • Dupont A. (2003). Cellulose in lithium chloride/N,N-dimethylacetamide, optimization of a dissolution method using paper substrates and stability of the solutions. Polymer 44: 4117–4126

    Article  CAS  Google Scholar 

  • El Seoud O.A., Marson G.A., Ciacco G.T., Frollini E. (2000). An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol. Chem. Phys. 201: 882–889

    Article  CAS  Google Scholar 

  • El Seoud O.A. and Heinze T. 2005. Organic esters of cellulose: new perspectives for old polymers. Advan. Polym. Sci. Springer-Verlag, Berlin, p. 103–149

  • Heinze T., Dicke R., Kull A.H., Klohr E.-A. and Koch W. 1999. Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys. 201: 627–631

    Google Scholar 

  • Heinze T., Dicke R., Koschella A., Kull A.H., Klohr E.-A., Koch W. (2000). Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys. 201: 627–631

    Article  CAS  Google Scholar 

  • Heinze T., Liebert T. (2001). Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 26: 1689–1762

    Article  CAS  Google Scholar 

  • Heinze T., Liebert T., Pfeiffer K., Hussain M.A. (2003). Unconventional cellulose esters: synthesis, characterization and structure-property relations. Cellulose 10: 283–296

    Article  CAS  Google Scholar 

  • Heinze T., Liebert T. (2004). Chemical characteristics of cellulose acetate. Macrom. Symp. 208: 167–237

    Article  CAS  Google Scholar 

  • Heinze T., Schwikal K., Barthel S. (2005). Ionic liquids as reaction medium for cellulose functionalization. Macromol. Biosci. 5: 520–525

    Article  CAS  Google Scholar 

  • Ikeda I., Washino K., Maeda Y. (2003). Graft polymerization of cyclic compounds on cellulose dissolved in tetrabutylammonium fluoride/dimethylsulfoxide. Sen’i Gakkaishi 59: 110–114

    Article  CAS  Google Scholar 

  • James D., David W., Frost R.L. (1978). Structure of aqueous solutions. Infrared librational band study of structure making and structure breaking by dissolved electrolytes. J. Chem. Soc., Faraday Trans. 174: 583–596

    Google Scholar 

  • Kessler M.A., Wolfbeis O.S. (1989). E T(33), a solvatochromic polarity and micellar probe for neutral aqueous solutions. Chem. Phys. Lipids 50: 51–56

    Article  CAS  Google Scholar 

  • Lacey R.E. (1997). Dialysis and Electrodialysis. Handbook of Separation Techniques for Chemical Engineers. Wiley, New York, p. 619–635 (3rd Edition)

    Google Scholar 

  • Kolthoff J.M. and Elving P.J. (1971). Treatise on Analytical Chemistry, Vol. 1, Part II, Sect. A. Interscience, New York, p. 69

    Google Scholar 

  • Langhals H. (1982). Polarity of binary liquid mixtures. Angew. Chem. Int. Ed. Engl. 21: 724–733

    Article  Google Scholar 

  • Levkin A.V. and Tsivadze A.Y. (1986). Solubility of lithium and potassium halides in pyridine, acetonitrile, and\(\gamma\)-butyrolactone. Zh. Neorganicheskoi Khim. 31: 284–5

    CAS  Google Scholar 

  • Lindgren J. and Kersti H. (1993). Theoretical simulation and experimental determination of OH and OD stretching bands of isotopically diluted HDO molecules in aqueous electrolyte solutions. J. Phys. Chem. 97: 5254–5259

    Article  CAS  Google Scholar 

  • Liptak B.G. (1994). Analytical Instrumentation. Chilton Book Company, Pennsylvania, p. 186

    Google Scholar 

  • Marcus Y. (1997). Ion Properties. Marcel Dekker, New York, pp. 209

    Google Scholar 

  • Max J.-J. and Chapados C. (2001). IR spectroscopy of aqueous alkali halide solutions: Pure salt-solvated water spectra and hydration numbers. J. Chem. Phys. 115: 2664–2675

    Article  CAS  Google Scholar 

  • Motojima T., Ikawa S. and Kimura M. (1981). Infrared intensities of ion–water interactions in aqueous electrolyte solutions. J. Quant. Spectrosc. Radiative Transfer 26: 177–185

    Article  CAS  Google Scholar 

  • Mundy W.C., Gutierrez L. and Spedding F.H. (1973). Raman intensities of the uncoupled hydroxyl-doscillators in liquid water. J. Chem. Phys. 59: 2173–2182

    Article  CAS  Google Scholar 

  • Mussini T., Covington A.K., Longhi P. and Rondinini S. (1985). Criteria for standardization of pH measurements in organic solvents and water+organic solvent mixtures of moderate to high permitivities. Pure Appl. Chem. 57: 865–876

    Article  Google Scholar 

  • Nakayama H. (1983). Hydrates of organic compounds. VII. The effect of anions on the formation of clathrate hydrates of tetrabutylammonium salts. Bull. Chem. Soc. Jpn. 56: 877–880

    Article  CAS  Google Scholar 

  • Pearson R.G. (1988). Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. 54: 1423–1430

    Article  Google Scholar 

  • Potthast A., Rosenau T., Buchner R., Röder T., Ebner G., Bruglachner H., Sixta H. and Kosma P. (2002). The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9: 41–53

    Article  CAS  Google Scholar 

  • Ramos L.A., Assaf J.M., El Seoud O.A. and Frollini E. (2005). Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in lithium chloride/N,N-dimetylacetamide solvent system. Biomacromology 6: 2638–2647

    Article  CAS  Google Scholar 

  • Reichardt C. (2003). Solvents and Solvent Effects in Organic Chemistry. Verlag Chemie, Weinheim, p. 389, 3rd Edition

    Google Scholar 

  • Röder T., Morgenstern B., Schelosky N. and Glatter O. (2001). Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42: 6765–6773

    Article  Google Scholar 

  • Samaranayake G. and Glasser W. (1993). Cellulose derivatives with low DS. I: a novel acylation system. Carbohyd. Polym. 22: 1–7

    Article  CAS  Google Scholar 

  • Scherer J.R. 1980. The vibrational spectroscopy of water. In: Clark R.J. and Hester R.E. (eds), Advanced Infrared Raman Spectroscopy. Wiley, New York, pp. 149–216

  • Scholz E. (1984). Karl-Fischer Tritation. Springer-Verlag, Berlin

    Google Scholar 

  • Sharma R.K. and Fry J.L. (1983). Instability of anhydrous tetra-n-alkylammonium fluoride. J. Org. Chem. 48: 2112–2114

    Article  CAS  Google Scholar 

  • Sipos P., Bódi I., May P.M. and Hefter G.T. (1997). The ionic product of water in concentrated tetramethylammonium chloride solutions. Talanta 44: 617–620

    Article  CAS  Google Scholar 

  • Sjoholm E., Gustafsson K., Pettersson B. and Colmsjo A. (1997). Characterization of the cellulosic residues from lithium chloride/N,N-dimethylacetamide dissolution of softwood kraft pulp. Carbohydr. Polym. 32: 57–63

    Article  CAS  Google Scholar 

  • Spear S.K., Holbrey J.D. and Rogers R.D. (2004). Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromology 5: 1379–1384

    Article  Google Scholar 

  • Steinmeier H. (2004). Chemistry of cellulose acetylation. Macrom. Symp. 208: 49–60

    Article  CAS  Google Scholar 

  • Sun H. and DiMagno S.G. (2005). Anhydrous tetrabutylammonium fluoride. J. Am. Chem. Soc. 127: 2050–2051

    Article  CAS  Google Scholar 

  • Swatloski R.P., Spear S.K., Holbrey J.D. and Rogers R.B. (2002). Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124: 4974–4975

    Article  CAS  Google Scholar 

  • Tada E.B., Novaki L.P. and El Seoud O.A. (2000). Solvatochromism in pure and binary solvent mixtures: effects of the molecular structure of the zwitterionic probe. J. Phys. Org. Chem. 13: 679–687

    Article  CAS  Google Scholar 

  • Tada E.B., Silva P.L. and El Seoud O.A. (2003). Thermo-solvatochromism of betaine dyes in aqueous alcohols: explicit consideration of the water–alcohol complex. J. Phys. Org. Chem. 16: 691–699

    Article  CAS  Google Scholar 

  • Tada E.B. 2004. Use of Solvatochromic Dyes to Study Solvation in Pure Solvents, Their Mixtures, and Micellar Solutions. Ph.D Thesis, University of São Paulo

  • Tada E.B., Silva P.L., Tavares C. and El Seoud O.A. (2005). Thermo-solvatochromism of zwitterionic probes in aqueous aliphatic alcohols and in aqueous 2-alkoxyethanols: relevance to the enthalpies of activation of chemical reactions. J. Phys. Org. Chem. 18: 398–407

    Article  CAS  Google Scholar 

  • Terbojevich M., Cosani A., Camilot M. and Focher B. (1995). Solution studies of cellulose tricarbanilates obtained in homogeneous phase. J. Appl. Polym. Sci. 55: 1663–1671

    Article  CAS  Google Scholar 

  • Tiddy G.J.T. (1980). Surfactant-water liquid crystal phases. Phys. Rep. 57: 1–46

    Article  CAS  Google Scholar 

  • Toyoshima I. (1993). Highly advanced utilization and functionalization of cellulose from the aspects of both chemistry and industry. In: Kennedy John F., Phillips Glyn O., Williams Peter A. (eds). Cellulosics: Chemical, Biochemical and Material Aspects. Ellis Horwoods, New York, p. 125–134

    Google Scholar 

  • Turner M.B., Spear S.K., Holbrey J.D. and Rogers R.D. 2004. Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromol. 5: 1379–1384

    Google Scholar 

  • Wiafe-Akenten J. and Bansil R. (1983). Intermolecular coupling in water-D1 solutions. J. Chem. Phys. 78: 7132–7137

    Article  CAS  Google Scholar 

  • Woodings C.R. (1995). The development of advanced cellulosic fibers. Intern. J. Biol. Macrom. 17: 305–309

    Article  CAS  Google Scholar 

  • Wu J., Zhang J., Zhang H., He J., Ren Q. and Guo M. (2004). Homogeneous acetylation of cellulose in a new nonic liquid. Biomacromology 5: 266–268

    Article  CAS  Google Scholar 

  • Wynn D.A., Roth M.M. and Pollard B.D. (1984). The solubility of alkali-metal flourides in non-aqueous solvents with and without crown ethers, as determined by flame emission spectrometry. Talanta 31:1036–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Research Foundation of São Paulo (FAPESP) for financial support and␣a␣pre-doctoral fellowship to L.C. Fidale, the Brazilian National Research Council (CNPq) for a␣research fellowship to O.A. El Seoud, the Deutsche Akademischer Austausch Dienst (DAAD) for a fellowship to M.H.G. Prechtl during his stay in São Paulo, the Werkstoffe aus Nachwachsenden Rohstoffen agency (WNR) for financial support to S. Köhler during her stay in São Paulo, Vanessa R. Marques of the Quality Control Department, Colgate-Palmolive, São Paulo, for making the fluoride SIE available to us, Dr Paulo A.R. Pires and Mr C. Guizzo for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. El Seoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidale, L.C., Köhler, S., Prechtl, M.H. et al. Simple, expedient methods for the determination of water and electrolyte contents of cellulose solvent systems. Cellulose 13, 581–592 (2006). https://doi.org/10.1007/s10570-005-9036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-005-9036-x

Key words

Navigation