Skip to main content
Log in

Rotation of a rigid satellite with a fluid component: a new light onto Titan’s obliquity

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We revisit the rotation dynamics of a rigid satellite with either a liquid core or a global subsurface ocean. In both problems, the flow of the fluid component is assumed inviscid. The study of a hollow satellite with a liquid core is based on the Poincaré–Hough model which provides exact equations of motion. We introduce an approximation when the ellipticity of the cavity is low. This simplification allows to model both types of satellite in the same manner. The analysis of their rotation is done in a non-canonical Hamiltonian formalism closely related to Poincaré’s “forme nouvelle des équations de la mécanique”. In the case of a satellite with a global ocean, we obtain a seven-degree-of-freedom system. Six of them account for the motion of the two rigid components, and the last one is associated with the fluid layer. We apply our model to Titan for which the origin of the obliquity is still a debated question. We show that the observed value is compatible with Titan slightly departing from the hydrostatic equilibrium and being in a Cassini equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Dumberry and Wieczorek (2016) could only highlight 5 degrees of freedom because their model of the Moon is axisymmetric and not triaxial.

  2. Here and throughout the paper, we follow the IAU recommendations which state that the symbol for a Julian year is “a”. Hence, radian per year is written “rad/a”.

  3. Here, we define Titan’s Laplace plane as the plane whose orientation is given by the constant part of the inclination solution of TASS1.6. (Vienne and Duriez 1995).

References

  • Anderson, J.D., Sjogren, W.L., Schubert, G.: Galileo gravity results and the internal structure of Io. Science 272, 709–712 (1996)

    Article  ADS  Google Scholar 

  • Baland, R.-M., van Hoolst, T., Yseboodt, M., Karatekin, Ö.: Titan’s obliquity as evidence of a subsurface ocean? Astron. Astrophys. 530, A141 (2011)

    Article  MATH  Google Scholar 

  • Baland, R.-M., Tobie, G., Lefèvre, A., Van Hoolst, T.: Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014)

    Article  ADS  Google Scholar 

  • Beck, J.A., Hall, C.D.: Relative equilibria of a rigid satellite in a circular Keplerian orbit. J. Astronaut. Sci. 46(3), 215–247 (1998)

    MathSciNet  Google Scholar 

  • Béghin, C., Randriamboarison, O., Hamelin, M., et al.: Analytic theory of Titan’s Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218, 1028–1042 (2012)

    Article  ADS  Google Scholar 

  • Bills, B.G., Nimmo, F.: Rotational dynamics and internal structure of Titan. Icarus 214, 351–355 (2011)

    Article  ADS  Google Scholar 

  • Campbell, J.K., Anderson, J.D.: Gravity field of the Saturnian system from Pioneer and Voyager tracking data. Astron. J. 97, 1485–1495 (1989)

    Article  ADS  Google Scholar 

  • Clairaut, A.: Théorie de la figure de la Terre. Davis fils, Paris (1743)

  • Colombo, G.: Cassini’s second and third laws. Astron. J. 71, 891 (1966)

    Article  ADS  Google Scholar 

  • Coyette, A., Van Hoolst, T., Baland, R.-M., Tokano, T.: Modeling the polar motion of Titan. Icarus 265, 1–28 (2016)

    Article  ADS  Google Scholar 

  • Dumberry, M., Wieczorek, M.A.: The forced precession of the Moon’s inner core. J. Geophys. Res. (Planets) 121, 1264–1292 (2016)

    Article  ADS  Google Scholar 

  • Fortes, A.D.: Titan’s internal structure and the evolutionary consequences. Planet. Space Sci. 60, 10–17 (2012)

    Article  ADS  Google Scholar 

  • Grasset, O., Sotin, C.: The liquidus of H2O-NH3 up to 1.5 GPa: implications for the presence of a liquid shell in Titan’s interior. In: Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report, vol. 27 (1996)

  • Hall, C.D., Beck, J.A.: Hamiltonian mechanics and relative equilibria of orbiting gyrostats. J. Astronaut. Sci. 55, 53–65 (2007)

    Article  ADS  Google Scholar 

  • Hansen, P.A.: Entwickelung des Products einer Potenz des Radius Vectors mit dem Sinus oder Cosinus eines vielfachen der wahren Anomalie in Reihen (in German), Abhandlungen der Koniglich Sachsischen Gesellschaft der Wissenschaften, vol. IV, Leipzig Hirzel, pp. 182–281 (1855)

  • Henrard, J.: The rotation of Io with a liquid core. Celest. Mech. Dyn. Astron. 101, 1–12 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hough, S.S.: The oscillations of a rotating ellipsoidal shell containing fluid. Philos. Trans. R. Soc. Lond. 186, 469–506 (1895)

    Article  ADS  MATH  Google Scholar 

  • Iess, L., Jacobson, R.A., Ducci, M., et al.: The tides of Titan. Science 337, 457 (2012)

    Article  ADS  Google Scholar 

  • Laplace, P.-S.: Traité de mécanique céleste - Tome 2, Chapt 1. Crapelet, Paris (1798)

  • Lewis, J.S.: Satellites of the outer planets: their physical and chemical nature. Icarus 15, 174–185 (1971)

    Article  ADS  Google Scholar 

  • Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1–28 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Maddocks, J.H.: On the stability of relative equilibria. IMA J. Appl. Math. 46(1–2), 71–99 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Mathews, P.M., Buffett, B.A., Herring, T.A., Shapiro, I.I.: Forced nutations of the earth: influence of inner core dynamics. 1. J. Geophys. Res. 96, 8219–8257 (1991)

    Article  ADS  Google Scholar 

  • Meriggiola, R., Iess, L.: A new rotational model of Titan from Cassini SAR data. In: European Planetary Science Congress 2012, pp. EPSC2012–593 (2012)

  • Meriggiola, R., Iess, L., Stiles, B.W., et al.: The rotational dynamics of Titan from Cassini RADAR images. Icarus 275, 183–192 (2016)

    Article  ADS  Google Scholar 

  • Nimmo, F., Hamilton, D.P., McKinnon, W.B., et al.: Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540, 94–96 (2016)

    Article  ADS  Google Scholar 

  • Noyelles, B.: Behavior of nearby synchronous rotations of a Poincaré–Hough satellite at low eccentricity. Celest. Mech. Dyn. Astron. 112, 353–383 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Noyelles, B.: The rotation of Io predicted by the Poincaré–Hough model. Icarus 223, 621–624 (2013)

    Article  ADS  Google Scholar 

  • Noyelles, B.: Contribution à l’étude de la rotation résonnante dans le Système Solaire (in French). Habilitation Thesis, https://arxiv.org/abs/1502.01472 (2014)

  • Noyelles, B., Nimmo, F.: New clues on the interior of Titan from its rotation state. In: IAU Symposium, IAU Symposium vol. 310, pp. 17–20 (2014)

  • Peale, S.J.: Generalized Cassini’s laws. Astron. J. 74, 483 (1969)

    Article  ADS  MATH  Google Scholar 

  • Peale, S.J., Margot, J.-L., Hauck, S.A., Solomon, S.C.: Consequences of a solid inner core on Mercury’s spin configuration. Icarus 264, 443–455 (2016)

    Article  ADS  Google Scholar 

  • Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. Comptes Rendus de l’Acad. des Sci. 132, 369–371 (1901)

    MATH  Google Scholar 

  • Poincaré, H.: Sur la précession des corps déformables. Bull. Astron. 27, 321–357 (1910)

    MATH  Google Scholar 

  • Rambaux, N., Castillo-Rogez, J.: Tides on satellites of giant planets. In: Souchay, J., Mathis, S., Tokieda, T. (eds) Lecture Notes in Physics, vol. 861, Springer, Berlin, p. 167 (2013)

  • Rambaux, N., Castillo-Rogez, J.C., Le Maistre, S., Rosenblatt, P.: Rotational motion of Phobos. Astron. Astrophys. 548, A14 (2012)

    Article  Google Scholar 

  • Rappaport, N., Bertotti, B., Giampieri, G., Anderson, J.D.: Doppler measurements of the quadrupole moments of Titan. Icarus 126, 313–323 (1997)

    Article  ADS  Google Scholar 

  • Richard, A.: Modèle de satellite à trois couches élastiques : application à la libration en longitude de Titan et Mimas (in French). Ph.D. thesis, Observatoire de Paris (2014)

  • Richard, A., Rambaux, N., Charnay, B.: Librational response of a deformed 3-layer Titan perturbed by non-Keplerian orbit and atmospheric couplings. Planet. Space Sci. 93, 22–34 (2014)

    Article  ADS  Google Scholar 

  • Stiles, B.W., Kirk, R.L., Lorenz, R.D., et al.: Determining Titan’s spin state from Cassini RADAR images. Astron. J. 135, 1669–1680 (2008)

    Article  ADS  Google Scholar 

  • Stiles, B.W., Kirk, R.L., Lorenz, R.D., et al.: Erratum: Determining Titan’s spin state from Cassini RADAR images. Astron. J. 139, 311 (2010)

    Article  ADS  Google Scholar 

  • Vienne, A., Duriez, L.: TASS1.6: ephemerides of the major Saturnian satellites. Astron. Astrophys. 297, 588 (1995)

    ADS  Google Scholar 

  • Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a gyrostat in a gravitational field. Nonlinear Dyn. 70(1), 231–247 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Benoît Noyelles and the anonymous referee for their constructive comments. G.B. also thanks Philippe Robutel for the useful conversations on the theoretical parts of this work and Rose-Marie Baland and Marie Yseboodt for our instructive discussion on this problem during the 2017 DDA meeting in London. Funding was provided by Université Pierre et Marie Curie and Observatoire de Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaël Boué.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boué, G., Rambaux, N. & Richard, A. Rotation of a rigid satellite with a fluid component: a new light onto Titan’s obliquity. Celest Mech Dyn Astr 129, 449–485 (2017). https://doi.org/10.1007/s10569-017-9790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-017-9790-8

Keywords

Navigation