Skip to main content
Log in

Delaunay variables approach to the elimination of the perigee in Artificial Satellite Theory

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Analytical integration in Artificial Satellite Theory may benefit from different canonical simplification techniques, like the elimination of the parallax, the relegation of the nodes, or the elimination of the perigee. These techniques were originally devised in polar-nodal variables, an approach that requires expressing the geopotential as a Pfaffian function in certain invariants of the Kepler problem. However, it has been recently shown that such sophisticated mathematics are not needed if implementing both the relegation of the nodes and the parallax elimination directly in Delaunay variables. Proceeding analogously, it is shown here how the elimination of the perigee can be carried out also in Delaunay variables. In this way the construction of the simplification algorithm becomes elementary, on one hand, and the computation of the transformation series is achieved with considerable savings, on the other, reducing the total number of terms of the elimination of the perigee to about one third of the number of terms required in the classical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Modifications of the Poincaré method by von Zeipel (1916–1918) in order to deal with degenerate Hamiltonians, shaped the frame in which Brouwer (1959) achieved his famous solution of AST. Hence, the method is sometimes known as the von Zeipel-Brouwer method (cf. Ferraz-Mello 2007).

  2. Approaches based on non-osculating elements are also possible (Gurfil 2004).

  3. Definitions related to the Lie transformations lingo may be consulted in the book of Ferraz-Mello (2007), for instance.

  4. Note that, after the different transformations, the transformed Hamiltonian continues to represent perturbed Keplerian motion, and hence the usual relations of elliptic motion still apply in spite of the different meaning of the prime variables from the original ones.

References

  • Abad, A., San-Juan, J.F., Gavín, A.: Short term evolution of artificial satellites. Celest. Mech. Dyn. Astron. 79(4), 277–296 (2001)

    Article  MATH  ADS  Google Scholar 

  • Alfriend, K.T., Coffey, S.L.: Elimination of the perigee in the satellite problem. Celest. Mech. 32(2), 163–172 (1984)

    Article  MATH  ADS  Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

    Book  Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. American Institute of Aeronautics and Astronautics, Reston (1999)

    Book  MATH  Google Scholar 

  • Broucke, R.A.: Numerical integration of periodic orbits in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 58(2), 99–123 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York and London (1961)

    Google Scholar 

  • Celletti, A., Negrini, P.: Non-integrability of the problem of motion around an oblate planet. Celest. Mech. Dyn. Astron. 61, 253–260 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Claes, H.: Analytical theory of earth’s artificial satellites (A.T.E.A.S.). Celest. Mech. 21, 193–198 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Coffey, S., Alfriend, K.T.: An analytical orbit prediction program generator. J. Guid. Control Dyn. 7, 575–581 (1984)

    Article  ADS  Google Scholar 

  • Coffey, S., Deprit, A.: Third-order solution to the main problem in satellite theory. J. Guid. Control Dyn. 5(4), 366–371 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Coffey, S.L., Deprit, A., Deprit, E.: Frozen orbits for satellites close to an earth-like planet. Celest. Mech. Dyn. Astron. 59(1), 37–72 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39(4), 365–406 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Cushman, R.: Reduction, Brouwer’s Hamiltonian and the critical inclination. Celest. Mech. 31(4), 401–429 (1983).; errata: 33(3), 297 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Cutting, E., Frautnick, J.C., Born, G.H.: Orbit analysis for SEASAT-A. J. Astronaut. Sci. 26, 315–342 (1978)

    ADS  Google Scholar 

  • Danby, J.M.A.: Motion of a satellite of a very oblate planet. Astron. J. 73(10), 1031–1038 (1968)

    Article  ADS  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Deprit, A.: The elimination of the parallax in satellite theory. Celest. Mech. 24(2), 111–153 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Deprit, A.: Delaunay normalisations. Celest. Mech. 26(1), 9–21 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  • Deprit, A., Ferrer, S.: Simplifications in the theory of artificial satellites. J. Astronaut. Sci. 37, 451–463 (1989)

    MathSciNet  ADS  Google Scholar 

  • Deprit, A., Rom, A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2(2), 166–206 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Deprit, A., Palacián, J.F., Deprit, E.: The relegation algorithm. Celest. Mech. Dyn. Astron. 79(3), 157–182 (2001)

    Article  MATH  ADS  Google Scholar 

  • Ferrer, S., San-Juan, J.F., Abad, A.: A note on lower bounds for relative equilibria in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 99(1), 69–83 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ferraz-Mello, S.: Canonical Perturbation Theories, Degenerate Systems and Resonance. Astrophysics and Space Science Library, vol. 345. Springer, New York (2007)

    Google Scholar 

  • Gurfil, P.: Analysis of \(J_2\)-perturbed motion using mean non-osculating orbital elements. Celest. Mech. Dyn. Astron. 90(3–4), 289–306 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Healy, L.M.: The main problem in satellite theory revisited. Celest. Mech. Dyn. Astron. 76(2), 79–120 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hori, G.: Theory of general perturbation with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)

    ADS  Google Scholar 

  • Irigoyen, M., Simo, C.: Nonintegrability of the \(J_2\) problem. Celest. Mech. Dyn. Astron. 55(3), 281–287 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kozai, Y.: The motion of a close earth satellite. Astron. J. 64(11), 367–377 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Kozai, Y.: Second-order solution of artificial satellite theory without air drag. Astron. J. 67(7), 446–461 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  • Krylov, N., Bogoliubov, N.N.: Introduction to Nonlinear Mechanics. Princeton University Press, Princeton, New York (1947)

    Google Scholar 

  • Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Averaging tesseral effects: closed form relegation versus expansions of elliptic motion. Mathematical Problems in Engineering 2013(Article ID 570127), 1–11 (2013a)

  • Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Precise analytical computation of frozen-eccentricity, low Earth orbits in a tesseral potential. Mathematical Problems in Engineering 2013 (Article ID 191384), 1–13 (2013b)

  • Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Proper averaging via parallax elimination (AAS 13–722). Adv. Astronaut. Sci. 150, 315–331 (2014)

    Google Scholar 

  • Lyddane, R.H.: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J. 68, 555–558 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  • Morrison, J.A.: Generalized method of averaging and the von Zeipel method. In: AIAA Paper N0. 65–687, American Institute of Aeronautics and Astronautics, USA (1965)

  • Nayfeh, A.H.: Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

    Google Scholar 

  • Palacián, J.F., San-Juan, J.F., Yanguas, P.: Analytical theory for the Spot satellite. Adv. Astronaut. Sci. 95, 375–382 (1997)

    Google Scholar 

  • Pars, L.A.: A Treatise on Analytical Dynamics, 1st edn. Heinemann, London (1965)

    MATH  Google Scholar 

  • Rosborough, G.W., Ocampo, C.: Influence of higher degree zonals on the frozen orbit geometry. Adv. Astronaut. Sci. 76, 1291–1304 (1992)

    Google Scholar 

  • Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  • San-Juan, J.F.: ATESAT: Automatization of theories and ephemeris in the artificial satellite problem. CNES report no. CT/TI/MS/MN/94-250, Toulouse, France (1994)

  • San-Juan, J.F.: ATESAT: review and improvements. Study of a family of analytical models of the artificial satellite generated by ATESAT and their numerical validation versus PSIMU and MSLIB. CNES report no. DGA/T/TI/MS/MN/97-258, Toulouse, France (1998)

  • San-Juan, J.F., López-Ochoa, L.M., López, R.: MathATESAT: a symbolic-numeric environment in astrodynamics and celestial mechanics. Lect. Notes Comput. Sci. 6783(2), 436–449 (2011)

    Article  Google Scholar 

  • Segerman, A.M., Coffey, S.L.: An analytical theory for tesseral gravitational harmonics. Celest. Mech. Dyn. Astron. 76(3), 139–156 (2001)

    Article  ADS  Google Scholar 

  • Shapiro, B.E.: Phase plane analysis and observed frozen orbit for the Topex/Poseidon mission. Adv. Astronaut. Sci. 91, 853–872 (1996)

    Google Scholar 

  • von Zeipel, H.: Research on the motion of minor planets (recherches sur le mouvement des petites planètes). NASA Translation: NASA TT F-9445 (1965)

Download references

Acknowledgments

Part of this research has been supported by the Government of Spain (Projects AYA 2009-11896, AYA 2010-18796, and grant Fomenta 2010/16 of Gobierno de La Rioja).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lara.

Appendix

Appendix

The integration “constant” \(V_2\) is

$$\begin{aligned} V_2&= \frac{n\,\alpha ^4}{512a^2}\,\frac{J_2^2}{\eta ^7}\left\{ \frac{\left( 1-15 c^2\right) ^2 \left( 2-15 c^2\right) }{2(1-5c^2)^3}\,s^4\,e^4\sin 4\omega \right. \nonumber \\&\left. +\left[ 12\,\frac{6-43c^2+125c^4}{1-5c^2} -(1-15c^2)\,\frac{25-126c^2+45c^4}{(1-5c^2)^2}\,e^2\right] s^2\,e^2\sin 2\omega \right\} .\nonumber \\ \end{aligned}$$
(45)

The term \(W_3\) of the generating function of the elimination of the perigee is

$$\begin{aligned} W_3&= V_3-J_2^3\frac{\alpha ^6 n }{a^4 \eta ^{11}}\left\{ \frac{14-15s^2}{4-5 s^2}s^2 \left[ \left( \frac{2925 s^8-7710 s^6+7064 s^4-2496 s^2+224}{2048(4-5s^2)^2}e^2 \right. \right. \right. \nonumber \\&\left. -\frac{(14-15 s^2)\,(2-3 s^2)}{2048(4-5s^2)}s^2\right) e^2\sin 2f+\left( -\frac{(14-15s^2)\,(2-3 s^2)}{512(4-5 s^2)}s^2 \right. \nonumber \\&\left. \left. +\frac{6075 s^8-15960 s^6+14556s^4-5104 s^2+448}{1024 \left( 4-5 s^2\right) ^2}e^2 \right) e\sin {f} \right] \nonumber \\&-\frac{(14-15 s^2)^2}{(4-5 s^2)^2}s^4\left[ \frac{135s^4-242 s^2+112}{2048(4-5 s^2)}e^3\sin (f+4 g)+\frac{3(2-3 s^2)}{2048}\,e^3 \sin (3 f+4 g) \right. \nonumber \\&\left. +\left( \frac{30 s^4-55 s^2+26}{2048(4-5 s^2)}e^2+\frac{5(2-3s^2)}{2048}\right) e^2\sin (2f+4g) +\frac{(2-3 s^2)}{4096}\,e^4 \sin (4f+4 g) \right] \nonumber \\&+\frac{3s^2 }{4-5 s^2}\left[ -\frac{14-15 s^2}{128}\,(2-3 s^2)^2\left( \frac{1}{8} e^2 \sin (4 f+2 g)+e \sin (3 f+2 g)\right) \right. \nonumber \\&-\left( \frac{3(14-15 s^2)}{1024(4-5s^2)}\,(85 s^6-22 s^4-96 s^2+48)\,e^2 \right. \nonumber \\&\left. +\frac{-3105 s^6+7251 s^4-5598 s^2+1424}{128}\right) e\sin (f+2 g) \nonumber \\&+\frac{(14-15 s^2)\,(-45 s^4-36 s^2+56)\,(2-3s^2)}{1024(4-5 s^2)}\left( \frac{1}{4} e^4 \sin (2 f-2 g)+e^3 \sin (f-2 g)\right) \nonumber \\&+\left( -\frac{3(14-15 s^2)}{4096(4-5 s^2)}\,(85 s^6-22s^4-96 s^2+48)\,e^4 \right. \nonumber \\&\left. \left. \left. +\frac{1890s^6-4317 s^4+3258 s^2-808}{512}e^2-\left( \frac{14}{16}-\frac{15}{16}s^2\right) \left( 1-\frac{3}{2}s^2\right) ^2\right) \sin (2f+2g)\right] \right\} \nonumber \\ \end{aligned}$$
(46)

where the integration constant \(V_3\) is

$$\begin{aligned} V_3&= -\frac{\alpha ^6 n J_2^3}{a^4 \eta ^{11} \left( 4-5 s^2\right) ^3}\left\{ \!-\!\left( \frac{275}{16384}s^4\!-\!\frac{1445}{49152}s^2\!+\!\frac{317}{24576}\right) \frac{(14\!-\!15 s^2)^3}{(4-5 s^2)^2}e^6s^6\sin 6\omega \qquad \right. \nonumber \\&+\left[ \left( \frac{225}{4096}s^6+\frac{2655}{32768}s^4-\frac{513}{2048}s^2+\frac{491}{4096}\right) \frac{(14-15 s^2)^2}{4-5 s^2}\,e^2 -\frac{617625}{8192}s^8 \right. \nonumber \\&\left. +\frac{4334325}{16384}s^6\!-\!\frac{2843175}{8192}s^4\!+\!\frac{826239}{4096}s^2\!-\!\frac{22429}{512}\right] e^4s^4\sin 4\omega \!+\!\left[ \!-\!\left( \frac{1164375}{8192}s^{12} \right. \right. \nonumber \\&-\frac{8703375}{16384}s^{10}+\frac{6658575}{8192}s^8-\frac{2712045}{4096}s^6+\frac{644695}{2048}s^4-\frac{11333}{128}s^2 \nonumber \\&\left. +\frac{49}{4}\right) \frac{e^4(14-15s^2)}{(4-5s^2)^2}+\left( \frac{14338125}{2048}s^{12}-\frac{126428625}{4096}s^{10}+\frac{56930775}{1024}s^8 \right. \nonumber \\&\left. -\frac{26745515}{512}s^6+\frac{6896989}{256}s^4-\frac{115555}{16}s^2+\frac{1575}{2}\right) \frac{e^2}{4-5s^2}+\frac{16407375}{4096}s^{10} \nonumber \\&\left. \left. -\frac{17059525}{1024}s^8\!+\!\frac{7037775}{256}s^6\!-\!\frac{1442021}{64}s^4\!+\!\frac{146825}{16}s^2\!-\!\frac{11883}{8}\right] e^2s^2\sin 2\omega \right\} \nonumber \\ \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, M., San-Juan, J.F. & López-Ochoa, L.M. Delaunay variables approach to the elimination of the perigee in Artificial Satellite Theory. Celest Mech Dyn Astr 120, 39–56 (2014). https://doi.org/10.1007/s10569-014-9559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9559-2

Keywords

Navigation