Skip to main content
Log in

Short-axis-mode rotation of a free rigid body by perturbation series

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A simple rearrangement of the torque free motion Hamiltonian shapes it as a perturbation problem for bodies rotating close to the principal axis of maximum inertia, independently of their triaxiality. The complete reduction of the main part of this Hamiltonian via the Hamilton–Jacobi equation provides the action-angle variables that ease the construction of a perturbation solution by Lie transforms. The lowest orders of the transformation equations of the perturbation solution are checked to agree with Kinoshita’s corresponding expansions for the exact solution of the free rigid body problem. For approximately axisymmetric bodies rotating close to the principal axis of maximum inertia, the common case of major solar system bodies, the new approach is advantageous over classical expansions based on a small triaxiality parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Andoyer’s triaxiality coefficient \(\beta \) is noted \(e\) by Kinoshita (1972) who, besides, instead of \(\alpha \) uses the inertia parameter \(D=-C/\alpha \) first proposed by Hitzl and Breakwell (1971).

References

  • Andoyer, M.H.: Cours de Mécanique Céleste. Gauthier-Villars et cie, Paris (1923)

    MATH  Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

    Book  Google Scholar 

  • Barkin, Y.V.: Unperturbed Chandler motion and perturbation theory of the rotation motion of deformable celestial bodies. Astron. Astrophys. Trans. 17(3), 179–219 (1998). doi:10.1080/10556799808232092

    Article  ADS  Google Scholar 

  • Chernous’ko, F.L.: On the motion of a satellite about its center of mass under the action of gravitational moments. PMM J. Appl. Math. Mech. 27(3), 708–722 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  • Cicalò, S., Scheeres, D.J.: Averaged rotational dynamics of an asteroid in tumbling rotation under the YORP torque. Celest. Mech. Dyn. Astron. 106(4), 301–337 (2010). doi:10.1007/s10569-009-9249-7

    Article  ADS  MATH  Google Scholar 

  • Cottereau, L., Souchay, J., Aljbaae, S.: Accurate free and forced rotational motions of rigid Venus. Astron. Astrophys. 515, A9 (2010). doi:10.1051/0004-6361/200913785

    Article  ADS  Google Scholar 

  • Dehant, V., de Viron, O., Karatekin, O., van Hoolst, T.: Excitation of Mars polar motion. Astron. Astrophys. 446(1), 345–355 (2006). doi:10.1051/0004-6361:20053825

    Article  ADS  Google Scholar 

  • Deprit, A.: Free rotation of a rigid body studied in the phase space. Am. J. Phys. 35, 424–428 (1967)

    Article  ADS  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969). doi:10.1007/BF01230629

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Escapa, A.: Corrections stemming from the non-osculating character of the Andoyer variables used in the description of rotation of the elastic Earth. Celest. Mech. Dyn. Astron. 110(2), 99–142 (2011). doi:10.1007/BF00051485

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ferrandiz, J.M., Sansaturio, M.E.: Elimination of the nodes when the satellite is a non spherical rigid body. Celest. Mech. Dyn. Astron. 46(4), 307–320 (1989). doi:10.1007/BF00051485

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ferrer, S., Lara, M.: Families of canonical transformations by Hamilton–Jacobi–Poincaré equation. Application to rotational and orbital motion. J. Geom. Mech. 2(3), 223–241 (2010a). doi:10.3934/jgm.2010.2.223

  • Ferrer, S., Lara, M.: Integration of the rotation of an Earth-like body as a perturbed spherical rotor. Astron. J. 139(5), 1899–1908 (2010b). doi:10.1088/0004-6256/139/5/1899

    Article  ADS  Google Scholar 

  • Fukushima, T.: Efficient integration of torque-free rotation by energy scaling method. In: Brzezinski, A., Capitaine, N., Kolaczek, B. (eds.) Proceedings of the Journées Systèmes de Référence Spatio-Temporels 2005. Space Research Centre PAS, Warsaw, Poland (2006)

  • Fukushima, T.: Simple, regular, and efficient numerical integration of rotational motion. Astron. J. 135(6), 2298–2322 (2008). doi:10.1088/0004-6256/135/6/2298

    Article  ADS  Google Scholar 

  • Getino, J., Ferrándiz, J.M.: A Hamiltonian theory for an elastic Earth—first order analytical integration. Celest. Mech. Dyn. Astron. 51(1), 35–65 (1991). doi:10.1007/BF02426669

    Article  ADS  Google Scholar 

  • Getino, J., Escapa, A., Miguel, D.: General theory of the rotation of the non-rigid Earth at the second order. I. The rigid model in Andoyer variables. Astron. J. 139(5), 1916–1934 (2010). doi:10.1088/0004-6256/139/5/1916

    Article  ADS  Google Scholar 

  • Golubev, V: Lectures on Integration of the Equations of Motion of a Rigid Body About a Fixed Point. Israel Program for Scientific Translations, S. Monson, Jerusalem (1960)

  • Henrard, J.: Virtual singularities in the artificial satellite theory. Celest. Mech. 10(4), 437–449 (1974). doi:10.1007/BF01229120

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Henrard, J., Moons, M.: Hamiltonian theory of the libration of the Moon. In: Szebehely, V.G. (ed.) Dynamics of Planets and Satellites and Theories of Their Motion, Proceedings of the International Astronomical Union colloquium no. 41, vol. 72, pp. 125–135. D. Reidel Publishing Company, Dordrecht; USA, Astrophysics and Space Science Library, Holland/Boston (1978)

  • Hitzl, D.L., Breakwell, J.V.: Resonant and non-resonant gravity-gradient perturbations of a tumbling tri-axial satellite. Celest. Mech. 3(5), 346–383 (1971). doi:10.1007/BF01231806

    Article  ADS  MATH  Google Scholar 

  • Hori, G.: Theory of general perturbation with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)

    Google Scholar 

  • Kinoshita, H.: First-order perturbations of the two finite body problem. Publ. Astron. Soc. Jpn. 24, 423–457 (1972)

    ADS  MathSciNet  Google Scholar 

  • Kinoshita, H.: Theory of the rotation of the rigid earth. Celest. Mech. 15(3), 277–326 (1977). doi:10.1007/BF01228425

    Article  ADS  MathSciNet  Google Scholar 

  • Kinoshita, H.: Analytical expansions of torque-free motions for short and long axis modes. Celest. Mech. Dyn. Astron. 53(4), 365–375 (1992). doi:10.1007/BF00051817

    Article  ADS  MATH  Google Scholar 

  • Kozlov, V.V.: La Géométrie des variables action-angle dans le problème d’Euler-Poinsot. Vestnik Moskovskogo Universiteta Seriya I Matematika, Mekhanika 5, 74–79 (1974); (in Russian)

  • Kubo, Y.: The kinematical mechanism for the perturbation of the rotational axis in the rotation of the elastic Earth. Celest. Mech. Dyn. Astron. 112(1), 99–106 (2012). doi:10.1007/s10569-011-9385-8

    Article  ADS  MathSciNet  Google Scholar 

  • Lara, M., Ferrer, S.: Closed form perturbation solution of a fast rotating triaxial satellite under gravity-gradient torque. Cosm. Res. 51(4), 289–303 (2013)

    Article  ADS  Google Scholar 

  • Lara, M., Fukushima, T., Ferrer, S.: First-order rotation solution of an oblate rigid body under the torque of a perturber in circular orbit. Astron. Astrophys. 519, A1 (2010). doi:10.1051/0004-6361/200913880

    Article  ADS  Google Scholar 

  • Lara, M., Fukushima, T., Ferrer, S.: Ceres’ rotation solution under the gravitational torque of the Sun. Mon. Notices R. Astron. Soc. 415(1), 461–469 (2011). doi:10.1111/j.1365-2966.2011.18717.x

    Article  ADS  Google Scholar 

  • Newhall, X.X., Williams, J.G.: Estimation of the lunar physical librations. Celest. Mech. Dyn. Astron. 66(1), 21–30 (1996). doi:10.1007/BF00048820

    Article  ADS  Google Scholar 

  • Sadov, Y.A.: The action-angles variables in the Euler-Poinsot problem. PMM J. Appl. Math. Mech. 34(5), 922–925 (1970)

    Google Scholar 

  • Sidorenko, V.V.: Capture and escape from resonance in the dynamics of the rigid body in viscous medium. J. Nonlinear Sci. 4(1), 35–57 (1994). doi:10.1007/BF02430626

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Sidorenko, V.V., Scheeres, D.J., Byram, S.M.: On the rotation of comet Borrelly’s nucleus. Celest. Mech. Dyn. Astron. 102(1–3), 133–147 (2008). doi:10.1007/s10569-008-9160-7

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Souchay, J., Bouquillon, S.: The high frequency variations in the rotation of Eros. Astron. Astrophys. 433(1), 375–383 (2005). doi:10.1051/0004-6361:20035780

    Article  ADS  Google Scholar 

  • Souchay, J., Folgueira, M., Bouquillon, S.: Effects of the triaxiality on the rotation of celestial bodies: application to the Earth. Mars and Eros. Earth Moon Planets 93(2), 107–144 (2003a). doi:10.1023/B:MOON.0000034505.79534.01

  • Souchay, J., Kinoshita, H., Nakai, H., Roux, S.: A precise modeling of Eros 433 rotation. Icarus 166(2), 285–296 (2003b). doi:10.1016/j.icarus.2003.08.018

  • Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 2nd edn. Cambridge University Press, Cambridge (1917)

    Google Scholar 

  • Zanardi, M.C.: Study of the terms of coupling between rotational and translational motions. Celest. Mech. 39(1), 147–158 (1986). doi:10.1007/BF01230847

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

Support is acknowledged from projects AYA 2009-11896 and AYA 2010-18796 of the Government of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lara, M. Short-axis-mode rotation of a free rigid body by perturbation series. Celest Mech Dyn Astr 118, 221–234 (2014). https://doi.org/10.1007/s10569-014-9532-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9532-0

Keywords

Navigation