Skip to main content
Log in

Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The radio tracking apparatus of the New Horizons spacecraft, currently traveling to the Pluto system where its arrival is scheduled for July 2015, should be able to reach an accuracy of 10 m (range) and 0.1 \(\text{ mm } \text{ s }^{-1}\) (range-rate) over distances up to 50 au. This should allow to effectively constrain the location of a putative trans-Plutonian massive object, dubbed Planet X (PX) hereafter, whose existence has recently been postulated for a variety of reasons connected with, e.g., the architecture of the Kuiper belt and the cometary flux from the Oort cloud. Traditional scenarios involve a rock-ice planetoid with \(m_\mathrm{X}\approx 0.7\,m_{\oplus }\) at some 100–200 au, or a Jovian body with \(m_\mathrm{X}\lesssim 5\,m_\mathrm{J}\) at about 10,000–20,000 au; as a result of our preliminary sensitivity analysis, they should be detectable by New Horizons since they would impact its range at a km level or so over a time span 6 years long. Conversely, range residuals statistically compatible with zero having an amplitude of 10 m would imply that PX, if it exists, could not be located at less than about 4,500 au (\(m_\mathrm{X}=0.7\,m_{\oplus }\)) or 60,000 au (\(m_\mathrm{X}=5\,m_\mathrm{J}\)), thus making a direct detection quite demanding with the present-day technologies. As a consequence, it would be appropriate to rename such a remote body as Thelisto. Also fundamental physics would benefit from this analysis since certain subtle effects predicted by MOND for the deep Newtonian regions of our Solar System are just equivalent to those of a distant pointlike mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. From : farthest, most remote.

References

  • Anglada-Escudé, G., Boss, A.P., Weinberger, A.J., Thompson, I.B., Butler, R.P., et al.: Astrometry and radial velocities of the planet Host M Dwarf GJ 317: new trigonometric distance, metallicity, and upper limit to the mass of GJ 317b. Astrophys. J. 746, 37 (2012)

    Article  ADS  Google Scholar 

  • Arridge, C.S., Agnor, C.B., André, N., Baines, K.H., Fletcher, L.N., et al.: Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Exp. Astron. 33, 753–791 (2012)

    Article  ADS  Google Scholar 

  • Arzoumanian, Z., Joshi, K., Rasio, F.A., Thorsett, S.E.: Orbital parameters of the PSR B1620–26 triple system. In: Johnston, S., Walker, M.A., Bailes, M. (eds). IAU Colloq. 160: Pulsars: Problems and Progress, vol. 105 of Astronomical Society of the Pacific Conference Series, pp. 525–530. Astronomical Society of the Pacific, San Framcisco (1996)

  • Blanchet, L., Novak, J.: External field effect of modified Newtonian dynamics in the Solar System. Mon. Notices R. Astron. Soc. 412, 2530–2542 (2011)

  • Christophe, B., Spilker, L.J., Anderson, J.D., André, N., Asmar, S.W., et al.: OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt. Exp. Astron. 34(2), 203–242 (2012)

    Google Scholar 

  • Fernández, J.A.: On the existence of a distant Solar companion and its possible effects on the Oort cloud and the observed comet population. Astrophys. J. 726, 33 (2011)

    Article  ADS  Google Scholar 

  • Feroz, F., Balan, S.T., Hobson, M.P.: Bayesian evidence for two companions orbiting HIP 5158. Mon. Notices R. Astron. Soc. 416, L104–L108 (2011)

    Article  ADS  Google Scholar 

  • Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In Klioner, S.A., Seidelmann, P. K., Soffel, M.H. (eds). IAU Symposium, vol. 261 of IAU, Symposium, pp. 159–169 (2010)

  • Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., et al.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111(3), 363–385 (2011)

    Article  ADS  Google Scholar 

  • Fountain, G.H., Kusnierkiewicz, D.Y., Hersman, C.B., Herder, T.S., Coughlin, T.B., et al.: The New Horizons spacecraft. Space Sci. Rev. 140, 23–47 (2008)

    Article  ADS  Google Scholar 

  • Freire, P.C.C., Kramer, M., Wex, N.: Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class. Quantum Gravity 29(18), 184007 (2012)

    Article  ADS  Google Scholar 

  • Gomes, R.S., Matese, J.J., Lissauer, J.J.: A distant planetary-mass solar companion may have produced distant detached objects. Icarus 184, 589–601 (2006)

    Article  ADS  Google Scholar 

  • Gomes, R.S., Soares, J.S.: Signatures of a putative planetary Mass Solar companion on the orbital distribution of Tno’s and Centaurs. In: AAS/Division of Dynamical Astronomy Meeting, vol. 43 of AAS/Division of Dynamical Astronomy Meeting, p. 05.01 (2012)

  • Iorio, L.: Constraints on the location of a putative distant massive body in the Solar System from recent planetary data. Celest. Mech. Dyn. Astron. 112, 117–130 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Lowell, P.: Memoir on a trans-Neptunian planet. Mem. Lowell Obs. 1(1), 1–135 (1915)

    MathSciNet  ADS  Google Scholar 

  • Lykawka, P.: Trans-Neptunian objects as natural probes to the unknown Solar System. Monogr. Environ. Earth Planets At press (2013)

  • Lykawka, P.S., Mukai, T.: An outer planet beyond Pluto and the origin of the trans-Neptunian belt architecture. Astron. J. 135, 1161–1200 (2008)

    Article  ADS  Google Scholar 

  • Matese, J.J., Whitmire, D.P.: Persistent evidence of a jovian mass solar companion in the Oort cloud. Icarus 211, 926–938 (2011)

    Article  ADS  Google Scholar 

  • Melott, A.L., Bambach, R.K.: Nemesis reconsidered. Mon. Notices R. Astron. Soc. 407, L99–L102 (2010)

    Article  ADS  Google Scholar 

  • Milgrom, M.: MOND effects in the inner Solar System. Mon. Notices R. Astron. Soc. 399, 474–486 (2009)

  • Perets, H.B., Kouwenhoven, M.B.N.: On the origin of Planets at very wide orbits from the recapture of free floating planets. Astrophys. J. 750, 83 (2012)

    Article  ADS  Google Scholar 

  • Raup, D.M., Sepkoski, J.J.: Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. 81, 801–805 (1984)

    Article  ADS  Google Scholar 

  • Richer, H.B., Ibata, R., Fahlman, G.G., Huber, M.: The Pulsar/White Dwarf/Planet system in Messier 4: improved astrometry. Astrophys. J. 597(1), L45–L47 (2003)

    Article  ADS  Google Scholar 

  • Rodriguez, D.R., Zuckerman, B., Melis, C., Song, I.: The ultra cool brown dwarf companion of WD 0806–661B: age, mass, and formation mechanism. Astrophys. J. Lett. 732, L29 (2011)

    Article  ADS  Google Scholar 

  • Schmidt, T.O.B., Neuhäuser, R., Seifahrt, A., Vogt, N., Bedalov, A., et al.: Direct evidence of a sub-stellar companion around CT Chamaeleontis. Astron. Astrophys. 491, 311–320 (2008)

    Article  ADS  Google Scholar 

  • Sigurdsson, S., Richer, H., Hansen, B., Stairs, I., Thorsett, S.: A young white dwarf companion to pulsar B1620–26: evidence for early planet formation. Science 301(5630), 193–196 (2003)

    Article  ADS  Google Scholar 

  • Soummer, R., Brendan Hagan, J., Pueyo, L., Thormann, A., Rajan, A., Marois, C.: Orbital motion of HR 8799 b, c, d using Hubble Space Telescope data from 1998: constraints on inclination, eccentricity, and stability. Astrophys. J. 741(1), 55 (2011)

    Article  ADS  Google Scholar 

  • Stern, S.A.: The New Horizons Pluto Kuiper belt mission: an overview with historical context. Space Sci. Rev. 140, 3–21 (2008)

    Article  ADS  Google Scholar 

  • Turyshev S.G., Toth V.T.: The pioneer anomaly. Living Rev. Relativ. 13(4), (2010). doi:10.12942/lrr-2010-4

  • Tyler, G.L., Linscott, I.R., Bird, M.K., Hinson, D.P., Strobel, D.F., et al.: The New Horizons radio science experiment (REX). Space Sci. Rev. 140, 217–259 (2008)

    Article  ADS  Google Scholar 

  • Veras, D., Tout, C.A.: The great escape—II. Exoplanet ejection from dying multiple-star systems. Mon. Notices R. Astron. Soc. 422, 1648–1664 (2012)

    Article  ADS  Google Scholar 

  • Veras, D., Wyatt, M.C.: The Solar System’s post-main-sequence escape boundary. Mon. Notices R. Astron. Soc. 421, 2969–2981 (2012)

    Google Scholar 

  • Veras, D., Wyatt, M.C., Mustill, A.J., Bonsor, A., Eldridge, J.J.: The great escape: how exoplanets and smaller bodies desert dying stars. Mon. Notices R. Astron. Soc. 417, 2104–2123 (2011)

    Article  ADS  Google Scholar 

  • Xu, M.H., Wang, G.L., Zhao, M.: The solar acceleration obtained by VLBI observations. Astron. Astrophys. 544, A135 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Iorio.

Appendix: Figures

Appendix: Figures

In this Appendix, all the figures quoted in the text are collected for a better overall readability of the paper. Figures 1234, and 5 refer to the range signatures \(\Delta \rho \) due to a planetoid with \(m_\mathrm{X}=0.7\,\,m_{\oplus }\), while Figs. 6789, and 10 deal with the case \(m_\mathrm{X}=5\,m_\mathrm{J}\). They cover a 6-years interval starting from \(t_0 =\) 1 Jan 2015.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L. Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis. Celest Mech Dyn Astr 116, 357–366 (2013). https://doi.org/10.1007/s10569-013-9491-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9491-x

Keywords

Navigation