Skip to main content
Log in

Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We demonstrate the remarkable effectiveness of boundary value formulations coupled to numerical continuation for the computation of stable and unstable manifolds in systems of ordinary differential equations. Specifically, we consider the circular restricted three-body problem (CR3BP), which models the motion of a satellite in an Earth–Moon-like system. The CR3BP has many well-known families of periodic orbits, such as the planar Lyapunov orbits and the non-planar vertical and halo orbits. We compute the unstable manifolds of selected vertical and halo orbits, which in several cases leads to the detection of heteroclinic connections from such a periodic orbit to invariant tori. Subsequent continuation of these connecting orbits with a suitable end point condition and allowing the energy level to vary leads to the further detection of apparent homoclinic connections from the base periodic orbit to itself, or the detection of heteroclinic connections from the base periodic orbit to other periodic orbits. Some of these connecting orbits are of potential interest in space mission design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre P., Doedel E.J., Krauskopf B., Osinga H.M.: Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discret. Contin. Dyn. Syst. 29, 1309–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Alessi E.M., Gómez G., Masdemont J.: Leaving the Moon by means of invariant manifolds of libration point orbits. Commun. Nonlinear Sci. Numer. Simul. 14, 4153–4167 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ascher U.M., Christiansen J., Russell R.D.: Collocation software for boundary value ODEs. ACM Trans. Math. Softw. 7, 209–222 (1981)

    Article  MATH  Google Scholar 

  • Barrabés E., Mondelo J.M., Ollé M.: Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP. Nonlinearity 22, 2901–2918 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Canalias E., Masdemont J.J.: Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the Sun–Earth and Earth–Moon systems. Discret. Contin. Dyn. Syst. 14, 261–279 (2006)

    MathSciNet  MATH  Google Scholar 

  • Champneys A.R., Kuznetsov Yu.A., Sandstede B.: A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurcation Chaos Appl. Sci. Eng. 6, 867–887 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Danby J.M.A.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond, VA: Fundamentals of Celestial Mechanics (1992)

    Google Scholar 

  • Davis K.E., Anderson R.L., Scheeres D.J., Born G.H.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107, 471–485 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davis K.E., Anderson R.L., Scheeres D.J., Born G.H.: Optimal transfers between unstable periodic orbits using invariant manifolds. Celest. Mech. Dyn. Astron. 109, 241–264 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Boor C., Swartz B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Delshams A., Masdemont J., Roldán P.: Computing the scattering map in the spatial Hill’s problem. Discret. Contin. Dyn. Syst. Ser. B 10, 455–483 (2008)

    Article  MATH  Google Scholar 

  • Dieci L., Lorenz J.: Computation of invariant tori by the method of characteristics. SIAM J. Num. Anal. 32, 1436–1474 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Dieci L., Lorenz J., Russell R.D.: Numerical calculation of invariant tori. SIAM J. Sci. Stat. Comput. 12, 607–647 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel E.J.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. Cong. Num. 30, 265–284 (1981)

    MathSciNet  Google Scholar 

  • Doedel E.J., Paffenroth R.C., Keller H.B., Dichmann D.J., Galán-Vioque J., Vanderbauwhede A.: Continuation of periodic solutions in conservative systems with applications to the 3-body problem. Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, 1–29 (2003)

    Article  Google Scholar 

  • Doedel E.J., Krauskopf B., Osinga H.M.: Global bifurcations of the Lorenz manifold. Nonlinearity 19, 2947–2972 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel E.J., Romanov V.A., Paffenroth R.C., Keller H.B., Dichmann D.J., Galán-Vioque J., Vanderbauwhede A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 2625–2677 (2007)

    Article  MATH  Google Scholar 

  • Doedel E.J., Kooi B.W., Van Voorn G.A.K., Kuznetsov Yu.A.: Continuation of connecting orbits in 3D-ODEs (II): point-to-cycle connections. Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, 1889–1903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel E.J., Kooi B.W., Van Voorn G.A.K., Kuznetsov Yu.A.: Continuation of connecting orbits in 3D-ODEs (II): cycle-to-cycle connections. Int. J. Bifurcation Chaos Appl. Sci. Eng. 19, 159–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel, E.J., Oldeman, B.E., et al.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montréal (2010). http://cmvl.cs.concordia.ca/auto/

  • Doedel E.J., Krauskopf B., Osinga H.M.: Global invariant manifolds in the transition to preturbulence in the Lorenz system. Indagationes Mathematicae 22, 222–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dunham D.W., Farquhar R.W.: Libration point missions. In: Gómez, G., Lo, M.W., Masdemont, J.J. (eds.) Libration Point Orbits and Applications, 1978–2002, pp. 45–73. World Scientific, Singapore (2003)

    Chapter  Google Scholar 

  • Edoh, K.D., Russell, R.D., Sun, W.: Orthogonal Collocation for Hyperbolic PDEs & Computation of Invariant Tori, Australian National Univ., Mathematics Research Report No. MRR 060-95 (1995)

  • Fairgrieve T.F., Jepson A.D.: O.K. Floquet multipliers. SIAM J. Numer. Anal. 28, 1446–1462 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Farquhar, R.W.: The Control and Use of Libration-Point Satellites, Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Stanford University, Stanford (1968)

  • Fontich E., Llave R., Sire Y.: Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions. J. Differ. Equ. 8, 3136–3213 (2009)

    Article  Google Scholar 

  • Gómez G., Mondelo J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys. D 157, 283–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez, G., Jorba, À., Simó, C., Masdemont, J.: Dynamics and mission design near libration points. Vol. III. World Scientific Monograph Series in Mathematics 4 ISBN 981-02-4211-5 (2001)

  • Gómez G., Koon W.S., Lo M.W., Marsden J.E., Masdemont J., Ross S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Goudas C.L.: Three-dimensional periodic orbits and their stability. Bull. Soc. Math. Grèce, Nouvelle série 2, 1–22 (1961)

    MATH  Google Scholar 

  • Henderson M.E.: Multiple parameter continuation: computing implicitly defined k-manifolds. Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, 451–476 (2002)

    Article  MATH  Google Scholar 

  • Hénon M.: Vertical stability of periodic orbits in the restricted problem. I. Equal masses. Astron. Astrophys. 28, 415–426 (1973)

    ADS  MATH  Google Scholar 

  • Jorba À., Masdemont J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D. 132, 189–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Keller H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P.H. (ed.) Applications of Bifurcation Theory, pp. 359–384. Academic Press, New York (1977)

    Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books (2008). ISBN 978-0-615-24095-4. http://www.cds.caltech.edu/~marsden/volume/missiondesign/KoLoMaRo_DMissionBk.pdf

  • Krauskopf B., Osinga H.M.: Computing invariant manifolds via the continuation of orbit segments. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J.M. (eds.) Numerical Continuation Methods for Dynamical Systems, pp. 117–154. Springer, New York (2007)

    Chapter  Google Scholar 

  • Krauskopf B., Osinga H.M., Galán-Vioque J.M.: Numerical Continuation Methods for Dynamical Systems. Springer, New York (2007)

    Book  MATH  Google Scholar 

  • Krauskopf B., Rieß T.: A Lin’s method approach finding and continuing heteroclinic connections involving periodic orbits. Nonlinearity 21, 1655–1690 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Llibre J., Martínez R., Simó C.: Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L 2 in the restricted three-body problem. J. Differ. Equ. 58, 104–156 (1985)

    Article  MATH  Google Scholar 

  • Lo M.W., Ross S.D.: Surfing the solar system: invariant manifolds and the dynamics of the solar system. JPL IOM 312, 2–4 (1997)

    Google Scholar 

  • Lo M., Williams B., Bollman W., Han D., Hahn Y., Bell J., Hirst E.: Genesis mission design. J. Astronaut. Sci. 41, 169–184 (2001)

    Google Scholar 

  • Lo M.W., Anderson R., Whiffen G., Romans L.: The role of invariant manifolds in low thrust trajectory design JPL. Nat. Aeronaut. Space Admin. 119, 2971–2990 (2004)

    Google Scholar 

  • Masdemont J.J.: High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. 20, 59–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Muñoz-Almaraz F.J., Freire-Macias E., Galán-Vioque J., Doedel E.J., Vanderbauwhede A.: Continuation of periodic orbits in conservative and Hamiltonian systems. Phys. D 181, 1–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Muñoz-Almaraz F.J., Freire E., Galán-Vioque J., Vanderbauwhede A.: Continuation of normal doubly symmetric orbits in conservative reversible systems. Celest. Mech. Dyn. Astron 97, 17–47 (2007)

    Article  ADS  MATH  Google Scholar 

  • Olikara, Z.P.: Computation of Quasi-Periodic Tori in the Circular Restricted Three-Body Problem. M.Sc. Dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette (2010). http://engineering.purdue.edu/people/kathleen.howell.1/Publications/Masters/2010_Olikara.pdf

  • Schilder F., Osinga H.M., Vogt W.: Continuation of quasi-periodic invariant tori. SIAM J. Appl. Dyn. Syst. 4, 459–488 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Szebehely V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  • Tantardini M., Fantino E., Ren Y., Pergola P., Gómez G., Masdemont J.J.: Spacecraft trajectories to the L 3 point of the Sun–Earth three-body problem. Celest. Mech. Dyn. Astron 108, 215–232 (2010)

    Article  ADS  MATH  Google Scholar 

  • Wilczak D., Zgliczyński P.: Heteroclinic connections between periodic orbits in planar restricted circular three-body problem—a computer assisted proof. Comm. Math. Phys. 234, 37–75 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wilczak D., Zgliczyński P.: Heteroclinic connections between periodic orbits in planar restricted circular three body problem II. Comm. Math. Phys. 259, 561–576 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Oldeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleja, R.C., Doedel, E.J., Humphries, A.R. et al. Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem. Celest Mech Dyn Astr 114, 77–106 (2012). https://doi.org/10.1007/s10569-012-9434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9434-y

Keywords

Navigation