Skip to main content
Log in

Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of hot Jupiters

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5–6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4–5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet’s semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5–2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet–planet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen A.J., Palmer P.L., Papaloizou J.C.B.: A conservative numerical technique for collisionless dynamical systems—comparison of the radial and circular orbit instabilities. MNRAS 242, 576 (1990)

    MathSciNet  ADS  MATH  Google Scholar 

  • Barker A.J., Ogilvie G.I.: On the tidal evolution of Hot Jupiters on inclined orbits. MNRAS 395, 2268 (2009)

    Article  ADS  Google Scholar 

  • Barker A.J., Ogilvie G.I.: On internal wave breaking and tidal dissipation near the centre of a solar-type star. MNRAS 404, 1849 (2010)

    ADS  Google Scholar 

  • Barker A.J.: Three-dimensional simulations of internal wave breaking and the fate of planets around solar-type stars. MNRAS 414, 1365–1378 (2011) (arXiv:1102.0857)

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: Lecture Notes on Stellar Oscillations, 4th edn. Department of Physics and Astronomy, University of Aarhus, http://astro.phys.au.dk/223cjcd/oscilnotes/ (1998)

  • Friedman J.L., Schutz B.F.: Lagrangian perturbation theory of nonrelativistic fluids. ApJ. 221, 937 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  • Hebrard, G., Ehrenreich, D., Bouchy, F., Delfosse, X., Moutou, C., Arnold, L., Boisse, I., Bonfils, X., Diaz, R. F., Eggenberger, A., Forveille, T., Lagrange, A.-M., Lovis, C., Pepe, F., Perrier, C., Queloz, D., Santerne, A., Santos, N.C., Segransan, D., Udry, S., Vidal-Madjar, A.: The retrograde orbit of the HAT-P-6b exoplanet. A&A 527, L11 (2011)

  • Ivanov P.B., Papaloizou J.C.B.: On the tidal interaction of massive extra solar planets on highly eccentric orbits. MNRAS 347, 437 (2004)

    Article  ADS  Google Scholar 

  • Ivanov P.B., Papaloizou J.C.B.: Dynamic tides in rotating objects: orbital circularisation of extra solar planets for realistic planet models. MNRAS 376, 682 (2007)

    Article  ADS  Google Scholar 

  • Ivanov P.B., Papaloizou J.C.B.: Inertial waves in rotating bodies: a WKBJ formalism for inertial waves and a comparison with numerical results. MNRAS 407, 1631 (2010)

    Article  ADS  Google Scholar 

  • Kochanek C.S.: The dynamical evolution of tidal capture binaries. ApJ. 385, 604 (1992)

    Article  ADS  Google Scholar 

  • Kosovichev A.G., Novikov I.D.: Non-linear effects at tidal capture of stars by a massive black hole. I. Incompressible affine model. MNRAS 258, 715 (1992)

    ADS  Google Scholar 

  • Kumar P., Goodman J.: Nonlinear damping of oscillations in Tidal-Capture Binaries. ApJ 466, 946 (1996)

    Article  ADS  Google Scholar 

  • Lai D.: Dynamical tides in rotating binary stars. ApJ 490, 847 (1997)

    Article  ADS  Google Scholar 

  • Lee H.M., Ostriker J.P.: Cross sections for tidal capture binary formation and stellar merger. ApJ. 310, 176 (1986)

    Article  ADS  Google Scholar 

  • Lin D.N.C., Papaloizou J.: On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. ApJ. 309, 846 (1986)

    Article  ADS  Google Scholar 

  • Mardling R.A.: The role of chaos in the circularization of Tidal Capture binaries. I. The chaos boundary. ApJ. 450, 722 (1995a)

    Article  ADS  Google Scholar 

  • Mardling R.A.: The role of chaos in the circularization of Tidal Capture binaries. II. Long-time evolution. ApJ. 450, 732 (1995b)

    Article  ADS  Google Scholar 

  • Mardling R.A., Aarseth S.J.: Tidal interactions in star cluster simulations. MNRAS 450, 722 (2001)

    Google Scholar 

  • Marchi S., Ortolani S., Nagasawa M., Ida S.: On the various origins of close-in extrasolar planets. MNRAS 394, L93 (2009)

    ADS  Google Scholar 

  • Nagasawa M., Ida S., Bessho T.: Formation of hot planets by a combination of planet scattering, Tidal circularization, and the Kozai mechanism. ApJ. 678, 498 (2008)

    Article  ADS  Google Scholar 

  • Papaloizou J.C.B., Ivanov P.B.: Oscillations of rotating bodies: a self-adjoint formalism applied to dynamic tides and tidal capture. MNRAS 364, 66 (2005)

    ADS  Google Scholar 

  • Papaloizou J.C.B., Ivanov P.B.: Dynamic tides in rotating objects: a numerical investigations of inertial waves in fully convective or baratropic stars and planets. MNRAS 407, 1631 (2010)

    Article  ADS  Google Scholar 

  • Papaloizou J.C.B., Pringle J.E.: On the rotational modes of fully convective stars with application to close binary systems. MNRAS 195, 743 (1981)

    ADS  MATH  Google Scholar 

  • Papaloizou J.C.B., Terquem C.: Dynamical relaxation and massive extrasolar planets. MNRAS 325, 221 (2001)

    Article  ADS  Google Scholar 

  • Press W.H., Teukolsky S.A.: On formation of close binaries by two-body tidal capture. ApJ. 213, 183 (1977)

    Article  ADS  Google Scholar 

  • Rasio F.A., Ford E.B.: Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954 (1996)

    Article  ADS  Google Scholar 

  • Ray A., Kembhavi A.K., Antia H.M.: Evolution of stellar binaries formed by tidal capture. A&A 184, 164 (1987)

    ADS  Google Scholar 

  • Saio H.: Rotational and tidal perturbations of nonradial oscillations in a polytropic star. ApJ. 244, 299 (1981)

    Article  ADS  Google Scholar 

  • Scholz, A.: Stellar spindown: from the ONC to the Sun. In: E. Stempels (ed.) Cool Stars, Stellar Systems and the Sun: Proceedings of the 15th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. AIP Conference Proceedings, vol. 1094, p. 61 (2009)

  • Skumanich A.: Time scales for Ca II emission decay, rotational braking, and lithium depletion. ApJ. 171, 565 (1972)

    Article  ADS  Google Scholar 

  • Varshalovich D.A., Moskalev A.N., Khersonskii V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  • Weidenschilling S.J., Marzari F.: Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384, 619 (1996)

    Article  ADS  Google Scholar 

  • Winn J.N., Fabrycky D., Albrecht S., Johnson J.A.: Hot stars with hot jupiters have high obliquities. ApJ. 718, L145 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, P.B., Papaloizou, J.C.B. Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of hot Jupiters. Celest Mech Dyn Astr 111, 51–82 (2011). https://doi.org/10.1007/s10569-011-9367-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9367-x

Keywords

Navigation