Skip to main content
Log in

Effect of 3rd-degree gravity harmonics and Earth perturbations on lunar artificial satellite orbits

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In a previous work we studied the effects of (I) the J 2 and C 22 terms of the lunar potential and (II) the rotation of the primary on the critical inclination orbits of artificial satellites. Here, we show that, when 3rd-degree gravity harmonics are taken into account, the long-term orbital behavior and stability are strongly affected, especially for a non-rotating central body, where chaotic or collision orbits dominate the phase space. In the rotating case these phenomena are strongly weakened and the motion is mostly regular. When the averaged effect of the Earth’s perturbation is added, chaotic regions appear again for some inclination ranges. These are more important for higher values of semi-major axes. We compute the main families of periodic orbits, which are shown to emanate from the ‘frozen eccentricity’ and ‘critical inclination’ solutions of the axisymmetric problem (‘J 2 + J 3’). Although the geometrical properties of the orbits are not preserved, we find that the variations in e, I and g can be quite small, so that they can be of practical importance to mission planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad A., Elipe A., Tresaco E.: Analytical model to find frozen orbits for a lunar orbiter. JGCD 32(3), 888–898 (2009)

    Article  Google Scholar 

  • Bertotti B., Farinella P., Farinella P.: Physics of the solar system, pp. 42–59. Kluwer, Dordrecht (2003)

    Google Scholar 

  • Coffey S.L., Deprit A., Deprit E.: Frozen Orbits close to an Earth-like planet, Celest. Mech. Dyn. Astron. 59, 37–72 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Coffey S.L., Deprit A., Miller B.R. (1986) The critical inclination in artificial satellite theory 39, 365–406

  • Cutting E., Born G.H., Frautnick J.C.: Orbit analysis for SEASAT-A. J. Astronaut. Sci. 26(4), 315–342 (1978)

    ADS  Google Scholar 

  • Deprit A., Henrard J.: Natural families of periodic orbits. AJ 72, 158–172 (1967)

    Article  ADS  Google Scholar 

  • De Saedeleer B.: Complete Zonal problem of the artificial satellite: Generic compact analytic first order in closed form. Celest. Mech. Dyn. Astron. 91, 239–268 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • De Saedeleer, B.: Théorie analytique fermée d’un satellite artificiel lunaire pour l’analyse de mission, Presses Universitaires de Namur, Belgique (2006a)

  • De Saedeleer B.: Analytical theory of lunar artificial satellite with third body perturbations. Celest. Mech. Dyn. Astron. 95, 407–423 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • De Saedeleer B., Henrard J.: The combined effect of J 2 and C 22 on the critical inclination of a lunar orbiter. Adv. Space Res. 37, 80–87 (2006)

    Article  ADS  Google Scholar 

  • Elipe, A., Lara, M.: Frozen orbits in the tesseral artificial satellite theory, Proceedings of the 12th International Symposium on ‘Space Flight Dynamics’, ESA Special Publication, 403, 397–402 (1997)

  • Froeschlé C., Gronczi R., Lega E.: The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space Sci. 45, 881–886 (1997)

    Article  ADS  Google Scholar 

  • Garfinkel, B.: The global solution in the problem of the critical inclination. Celest. Mech. 8 (1973)

  • Hughes S.: The ‘Critical inclination’: another look. Celest. Mech. 25, 235–266 (1981)

    Article  MATH  ADS  Google Scholar 

  • Jupp A.H.: The critical inclination problem—30 years of progress. Celest. Mech. 43, 127–138 (1988)

    MATH  ADS  Google Scholar 

  • Knežević Z., Milani A.: Orbit maintenance of a lunar polar orbiter. Planet. Space Sci. 46, 1605–1611 (1998)

    Article  ADS  Google Scholar 

  • Lara M., Deprit A., Elipe A.: Numerical continuation of families of frozen orbits in the zonal problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 62, 167–181 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Lara, M., De Saedeleer, B., Ferrer, S.: Preliminary design of low lunar orbits. Proceedings of the 21st international symposium on space flight dynamics, edited by CNES, Sep–Oct 2009 (2009)

  • Lega E., Froeschlé C.: On the relationship between fast lyapunov indicator and periodic orbits for symplectic mappings. Celest. Mech. Dyn. Astron. 81, 129–147 (2001)

    Article  MATH  ADS  Google Scholar 

  • Murray C., Dermott S.: Solar system dynamics. Cambridge University Press, Cambridge, UK (1999)

    MATH  Google Scholar 

  • Roy A.E.: Orbital motion, pp. 283–286. Adam Hilger LTD, Bristol (1982)

    Google Scholar 

  • Sidi M.J.: Spacecraft dynamics and control, pp. 34–35. Cambridge University Press, USA (2002)

    Google Scholar 

  • Tzirti S., Tsiganis K., Varvoglis H.: Quasi-critical orbits for artificial lunar satellites. Celest. Mech. Dyn. Astron. 104, 227–239 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Vallado D.A.: Fundamentals of astrodynamics and applications. Kluwer, Dordrecht (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tzirti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzirti, S., Tsiganis, K. & Varvoglis, H. Effect of 3rd-degree gravity harmonics and Earth perturbations on lunar artificial satellite orbits. Celest Mech Dyn Astr 108, 389–404 (2010). https://doi.org/10.1007/s10569-010-9313-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9313-3

Keywords

Navigation