Skip to main content
Log in

Some orbital characteristics of lunar artificial satellites

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper we present an analytical theory with numerical simulations to study the orbital motion of lunar artificial satellites. We consider the problem of an artificial satellite perturbed by the non-uniform distribution of mass of the Moon and by a third-body in elliptical orbit (Earth is considered). Legendre polynomials are expanded in powers of the eccentricity up to the degree four and are used for the disturbing potential due to the third-body. We show a new approximated equation to compute the critical semi-major axis for the orbit of the satellite. Lie-Hori perturbation method up to the second-order is applied to eliminate the terms of short-period of the disturbing potential. Coupling terms are analyzed. Emphasis is given to the case of frozen orbits and critical inclination. Numerical simulations for hypothetical lunar artificial satellites are performed, considering that the perturbations are acting together or one at a time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad A., Elipe A., Tresaco E.: Analytical model to find frozen orbits for a lunar orbiter. J. Guid. Control Dyn. 32(3), 888–898 (2009)

    Article  Google Scholar 

  • Breiter S.: Second-order solution for the zonal problem of satellite theory. Celest. Mech. Dyn. Astron. 67, 237–249 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Breiter S., Elipe A.: Critical inclination in the main problem of a massive satellite. Celest. Mech. Dyn. Astron. 95, 287–297 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Broucke R.A.: The Double Averaging of the Third Body Perturbations; Classnotes. Austin-Texas University, USA (1992)

    Google Scholar 

  • Broucke R.A.: Long-term third-body effects via double averaging. J. Guid. Control Dyn. 26(1), 27 (2003)

    Article  Google Scholar 

  • Brouwer D.: Solution of the problem of an artificial satellite, theory without drag. Astron. J. 64(9), 378–397 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Carvalho, J.P.dos S., Vilhena de Moraes, R., Prado, A.F.B.A.: Moon artificial satellites: Lunar oblateness and earth perturbations. In: ICNPAA-2008, 2009, Genoa. Proceedings of the ICNPAA 2008, pp. 1095–1106. Cambrige Scientific, Cambridge (2009a)

  • Carvalho J.P.dos S., Vilhena de Moraes R., Prado A.F.B.A.: Nonsphericity of the Moon and near Sun-synchronous polar lunar orbits. Math. Probl. Eng. 2009, 1–25 (2009b)

    Article  Google Scholar 

  • Cayley A.: Tables of the developments of functions in theory of elliptic motion. Mem. Roy. Astron. Soc. 29, 191–306 (1861)

    Google Scholar 

  • D’Avanzo P., Teofilatto P., Ulivieri C.: Long-terms effects on lunar orbiter. Acta Astronaut. 40(1), 13–20 (1997)

    Article  ADS  Google Scholar 

  • De Saedeleer B., Henrard J.: The combined effect of J 2 and C 22 on the critical inclination of a lunar orbiter. Adv. Space Res. 37, 80–87 (2006)

    Article  ADS  Google Scholar 

  • De Saedeleer B.: Analytical theory of a lunar satellite with third body perturbations. Celest. Mech. Dyn. Astron. 95, 407–423 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Domingos R.C., Moraes R.V., Prado A.F.B.A.: Third-body perturbation in the case of elliptic orbits for the disturbing body. Adv. Appl. Stat. Sci. 130, 1571–1578 (2008)

    Google Scholar 

  • Elipe A., Lara M.: Frozen orbits about Moon. J. Guid. Control Dyn. 26(2), 238–243 (2003)

    Article  Google Scholar 

  • Ely T.A., Lieb E.: Constellations of elliptical inclined lunar orbits providing polar and global coverage. J. Astronaut. Sci. 54(1), 53–67 (2006)

    MathSciNet  Google Scholar 

  • Ferrer S., San-Juan J.F., Abad A.: A note on lower bounds for relative equilibria in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 99, 69–83 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Folta, D., Quinn, D.: Lunar Frozen Orbits, Paper AIAA 2006-6749, Aug (2006)

  • Giacaglia G.E.O., Murphy J., Felsentreger T.: A semi-analytic theory for the motion of a lunar satellite. Celest. Mech. 3, 3–66 (1970)

    Article  MATH  ADS  Google Scholar 

  • Hori G.I.: Theory of general perturbations with unspecified canonical variables. Publ. Astr. Soc. Jpn. 18(4), 287–296 (1966)

    ADS  Google Scholar 

  • Hori G.I.: A new approach to the solution of the main problem of the lunar theory. Astr. J. 68, 125–146 (1963)

    Article  ADS  Google Scholar 

  • Knežević Z., Milani A.: Orbit maintenance of a lunar polar orbiter. Planet Space Sci. 46(11/12), 1605–1611 (1998)

    Article  ADS  Google Scholar 

  • Kovalevsky J.: Introduction to Celestial Mechanics. Lib. Armand Colin, Paris (1967)

    MATH  Google Scholar 

  • Kozai Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67(9), 591 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  • Lara, M., Palacián, J.F., Russell, R.P.: Mission design through averaging of perturbed keplerian systems: The paradigm of an Enceladus orbiter. Celest. Mech. Dyn. Astron. 108, 1–22 (2010)

    Google Scholar 

  • Meyer, W.K., Buglia, J.J., Desai, P.N.: Lifetimes of Lunar Satellite Orbits. NASA STI/Recon Technical Report N-TP-3394 94, 27771 (1994)

  • Morando B.: Mouvement d’um Satellite Artificiel de la Terre. Gordon and Breach, Paris (1974)

    Google Scholar 

  • Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Oesterwinter C.: The motion of a lunar satellite. Celest. Mech. 1, 368–436 (1970)

    Article  MATH  ADS  Google Scholar 

  • Palacián J.F.: Dynamics of a satellite orbiting a planet with an inhomogeneous field. Celest. Mech. Dyn. Astron. 98, 219–249 (2007)

    Article  MATH  ADS  Google Scholar 

  • Park S.Y., Junkins J.L.: Orbital mission analysis for a lunar mapping satellite. J. Astronaut. Sci. 43(2), 207–217 (1995)

    Google Scholar 

  • Prado A.F.B.A.: Third-body perturbation in orbits around natural satellites. J. Guid. Control Dyn. 26(1), 33–40 (2003)

    Article  Google Scholar 

  • Radwan M.: Analytical approach to the motion of a lunar artificial satellite. Astrophys. Space Sci. 283(2), 133–150 (2003)

    Article  MATH  ADS  Google Scholar 

  • Solórzano, C.R.H.: Third-Body Perturbation Using a Single Averaged Model. Master Dissertation, National Institute for Space Research (INPE), São José dos Campos, SP, Brazil (2002)

  • Szebehely V.: Adventures in Celestial Mechanics. University of Texas Press, Austin (1989)

    MATH  Google Scholar 

  • Tzirti S., Tsiganis K., Varvoglis H.: Quasi-critical orbits artificial lunar satellites. Celest. Mech. Dyn. Astron. 104(3), 227–239 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Wang X., Liu L.: Another mechanism of restricting the lifetimes of orbiting satellites. Chin. Astron. Astrophys. 26, 489–496 (2002)

    Article  ADS  Google Scholar 

  • Winter O.C., Mourão D.C., Melo C.F., Macau E.N., Ferreira J.L., Carvalho J.P.dos S.: Controlling the eccentricity of polar lunar orbits with low-thrust propulsion. Math. Probl. Eng. 2009, 1–10 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vilhena de Moraes.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, J.P.S., Vilhena de Moraes, R. & Prado, A.F.B.A. Some orbital characteristics of lunar artificial satellites. Celest Mech Dyn Astr 108, 371–388 (2010). https://doi.org/10.1007/s10569-010-9310-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9310-6

Keywords

Navigation