Skip to main content
Log in

Attitude stability of artificial satellites subject to gravity gradient torque

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque, using a canonical formulation, and Andoyer’s variables to describe the rotational motion. The stability criteria employed requires the reduction of the Hamiltonian to a normal form around the stable equilibrium points. These points are determined through a numerical study of the Hamilton’s equations of motion and linear study of their stability. Subsequently a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system resulting in a normalized quadratic Hamiltonian. A semi-analytic process of normalization based on Lie–Hori algorithm is applied to obtain the Hamiltonian normalized up to the fourth order. Lyapunov stability of the equilibrium point is performed using Kovalev and Savchenko’s theorem. This semi-analytical approach was applied considering some data sets of hypothetical satellites, and only a few cases of stable motion were observed. This work can directly be useful for the satellite maintenance under the attitude stability requirements scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Celletti A., Sidorenko V.: Some properties of the dumbbell satellite attitude dynamics. Celes. Mech. Dyn. Astron. 101(1–2), 105–126 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Chudnenko A.N.: On the stability of uniform rotations of a rigid body around the principal axis. Prikl. Mat. Mekh. 44, 174–179 (1981)

    MathSciNet  Google Scholar 

  • Crenshaw J.U., Fitzpatrick P.M.: Gravity effects on the rotational motion of a uniaxial artificial satellite. AIAA J. 6, 2140 (1968)

    Article  MATH  ADS  Google Scholar 

  • de Moraes R.V.: A semi-analytical method to study perturbed rotational motion. Celes. Mech. 45, 281–284 (1989)

    Article  ADS  Google Scholar 

  • Elipe A., Ferrer S.: On the equilibrium solutions in the circular planar restricted three rigid bodies problem. Celes. Mech. 37(1), 59–70 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • Elipe A., Lopez-Moratalla T.: On the Liapunov stability of stationary points around a central body. J. Guidance Control Dynam. 29, 1376–1383 (2006)

    Google Scholar 

  • Ferraz-Mello S.: Canonical Perturbation Theories—Degenerate Systems and Resonance. Springer, New York (2007)

    MATH  Google Scholar 

  • Hori G.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–299 (1966)

    ADS  Google Scholar 

  • Hori, G.: Finite Two Body Problem, Reprinted from the Extra Collection of Papers Contributed to the IAU Symposium no. 48 (1971)

  • Kinoshita H.: First order perturbations of the two finite body problem. Publ. Astron. Soc. Jpn. 24, 423–439 (1972)

    ADS  MathSciNet  Google Scholar 

  • Kovalev A.M., Savchenko A.Ia.: Stability of uniform rotations of a rigid body about a principal axis. Prikl. Mat. Mekh. 39(4), 650–660 (1975)

    Google Scholar 

  • Kuga H.K., Orlando V., Lopes R.V.F.: Flight dynamics operations during leap for the INPE’s second environmental data collecting satellite SCD2. RBCM J. Brazilian Soc. Mech. Sci. 21, 339–344 (1999)

    Google Scholar 

  • Machuy, A.L.F.: Cálculo efetivo da forma normal parcial para o problema de Hill. 2001. M.Sc. Dissertation, 71p. Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro (2001)

  • Mansilla J.E.: Stability of Hamiltonian systems with three degrees of freedom and the three body problem. Celes. Mech. Dyn. Astron. 94(3), 249–269 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Orlando V., Kuga H.K., Lopes R.V.F.: Reducing the geopotential tesseral harmonic effects on autonomous longitude drift control of Sun-synchronous satellites. Adv. Astron. Sci. 95, 361–374 (1997)

    Google Scholar 

  • Sarychev V.A., Mirer S.A., Degtyarev A.A., Duarte E.K.: Investigation of equilibria of a satellite subjected to gravitational and aerodynamic torques. Celes. Mech. Dyn. Astron. 97(4), 267–287 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sarychev V.A., Mirer S.A., Degtyarev A.A.: Equilibria of a satellite subjected to gravitational and aerodynamic torques with pressure center in a principal plane of inertia. Celes. Mech. Dyn. Astron. 100(4), 301–318 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Stuchi T.J.: KAM tori in the center manifold of the 3-D Hill problem. In: Winter, O.C., Prado, A.F.B.(eds) Advanced in Space Dynamics, vol. 2, pp. 112–127. INPE, São José dos Campos (2002)

    Google Scholar 

  • Thiry U.: Les Fondements de La Mécanique Céleste. Gordon & Breach, Paris (1970)

    MATH  Google Scholar 

  • Zanardi, M.C.F.P.S.: Coupled Translational-Rotational Motion of Artificial Satellites (in Portuguese). M.Sc. Dissertation, Aeronautical Institute of Technology, São José dos Campos (1983)

  • Zanardi M.C.: Study of the terms of coupling between rotational and translational motion. Celes. Mech. 39(2), 147–164 (1986)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolpho Vilhena de Moraes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Moraes, R.V., Cabette, R.E.S., Zanardi, M.C. et al. Attitude stability of artificial satellites subject to gravity gradient torque. Celest Mech Dyn Astr 104, 337–353 (2009). https://doi.org/10.1007/s10569-009-9216-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9216-3

Keywords

Navigation