Skip to main content
Log in

Effect of dietary selenium deficiency on the in vitro fertilizing ability of mice spermatozoa

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Selenium is an essential micronutrient for mammals, being integral part of antioxidant system. The aim of the study was to evaluate the effect of selenium deficiency on in vitro fertilization (IVF) capacity of spermatozoa and on oxidative stress in these cells. Male C57BL/6N mice were maintained on selenium-deficient or selenium-sufficient diets (0.02 or 0.2 ppm of selenium as selenomethionine, respectively) for 4 months. Liver glutathione peroxidase activity measurements were used to confirm selenium deficiency. Sperm quality and IVF capability among both groups were evaluated. To assess oxidative damage, lipid peroxidation as malondialdehyde production was determined in spermatozoa as well as the testes. Ultrastructural analyses of spermatozoa nuclei using transmission electron microscopy were also performed. The percentage of eggs fertilized with sperm from selenium-deficient mice was significantly decreased by approximately 67%. This reduced fertilization capacity was accompanied by increased levels of lipid peroxidation in both the testes and sperm, indicating that selenium deficiency induced oxidative stress. Consistent with this finding, spermatozoa from selenium-deficient animals exhibited altered chromatin condensation. Deficiency in dietary selenium decreases the reproductive potential of male mice and is associated with oxidative damage in spermatozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken RJ. A free radical theory of male infertility. Reprod Fertil Dev 1994;6:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Aitken RJ, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 1994;6:259–67.

    Article  Google Scholar 

  • Aitken RJ, Krausz C. Oxidative stress DNA damage and the Y chromosome. Reproduction 2001;122:497–506.

    Article  PubMed  CAS  Google Scholar 

  • Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 1998;59:1037–46.

    Article  PubMed  CAS  Google Scholar 

  • Aravindan GR, Bjordahl J, Jost LK, Evenson DP. Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single cell electrophoresis. Exp Cell Res 1997;236:231–7.

    Article  PubMed  CAS  Google Scholar 

  • Beckett GJ, Nicol F, Proudfoot D, Dyson K, Loucaides G, Arthur JR. The changes in the hepatic enzyme expression caused by selenium deficiency and hypothyroidism in rats are produced by independent mechanism. Biochem J 1990;266:743–7.

    PubMed  CAS  Google Scholar 

  • Benemariya H, Robberecht H, Deelstra H. Daily dietary intake of copper, zinc and selenium by different population groups in Burundi, Africa. Science Total Environ 1993;136:49–76.

    Article  CAS  Google Scholar 

  • Böck A. Biosynthesis of selenoproteins – an overview. Biofactors 2000;11:77–8.

    PubMed  Google Scholar 

  • Brigelius-Flohé R, Wingler K, Muller C. Estimation of individual types of glutathione peroxidases. Methods Enzymol 2002;347:101–12.

    Article  PubMed  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M, Tucker M. Biofortification of UK food crops with selenium. Proc Nutr Soc 2006;65:169–81.

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1987;52:302–10.

    Google Scholar 

  • Burk RF, Lane JM, Lawrence RA, Gregory PE. Effect of selenium deficiency on liver and blood glutathione peroxidase activity in guinea pigs. J Nutr 1981;111:690–93.

    PubMed  CAS  Google Scholar 

  • Edwards MJ, Hartley WJ, Hansen EA. Selenium and lowered reproductive efficiency in pigs. Aust Vet J 1997;53:553–4.

    Article  Google Scholar 

  • Fenton JI, Hord NG. Stage matters: choosing relevant model systems to address hypotheses in diet and cancer chemoprevention research. Carcinogenesis 2006;27:893–902.

    Article  PubMed  CAS  Google Scholar 

  • Godeas C, Tramer F, Micali F, Soranzo M, Sandri G, Panfili E. Distribution and possible novel role of phospholipid hydroperoxide glutathione peroxidase in rat epididymal spermatozoa. Biol Reprod 1997;57:1502–8.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JH, Hancock DD, Conrad HR. Vitamin E and selenium for reproduction of the dairy cow. J Dairy Sci 1984;67:123–32.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Mol Cell Biol 2002;22:3565–76.

    Article  PubMed  CAS  Google Scholar 

  • Huges CM, Lewis SEM, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men using a modified comet assay. Mol Hum Reprod 1996;2:613–20.

    Article  Google Scholar 

  • Jones WR. The investigation of immunological infertility. Med J Aust 1979;2:188–92.

    PubMed  CAS  Google Scholar 

  • Kamjoo M, Brison DR, Kimber SJ. Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture. Mol Reprod Dev 2002;61:67–77.

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Bansal MP. Effect of selenium induced-oxidative stress on the oxidation reduction system and reproductive ability of male mice. Biol Trace Elem Res 2004;97:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Kaushal N, Bansal MP. Inhibition of CDC2/Cyclin B1 in response to selenium-induced oxidative stress during spermatogenesis: potential role of Cdc25c and p21. Mol Cell Biochem 2007;298:139–50.

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Doreswamy K, Shrilatha B, Muralidhara. Oxidative stress associated DNA damage in testis of mice: Induction of abnormal sperms and effects of fertility. Mutat Res 2002;513:103–11.

    Google Scholar 

  • Levander OA. Considerations on the assessment of selenium status. Fed Proc 1985;44:2579–83.

    PubMed  CAS  Google Scholar 

  • Moreno-Reyes R, Suetens C, Mathieu F, Begaux F, Zhu D, Rivera MT, Boelaert M, Nève J, Perlmutter N, Vanderpas J. Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N Engl J Med 1998;339:1112–20.

    Article  PubMed  CAS  Google Scholar 

  • National Academy of Sciences (NAS). Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. New York: Academic; 2000.

  • O’Flaherty C, Breininger E, Beorlegui N, Beconi MT. Acrosome reaction in bovine spermatozoa: role of reactive oxygen species and lactate dehydrogenase C4. Biochim Biophys Acta 2005;1726:96–101.

    PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Hill KE, Burk RF. Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-deficient rats. Reproduction 2004;127:335–42.

    Article  PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70:158–69.

    PubMed  CAS  Google Scholar 

  • Pfeifer H, Conrad M, Roethlein D, Kyriakopoulos A, Brielmeier M, Bornkamm, GW, Behne D. Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J 2001;15:1236–8.

    Article  PubMed  CAS  Google Scholar 

  • Schrauzer GN. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J Nutr 2000;130:1653–6.

    PubMed  CAS  Google Scholar 

  • Shalini S, Bansal MP. Role of selenium in spermatogenesis: differential expression of cjun and cfos in tubular cells of mice testis. Mol Cell Biochem 2006;292:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Shalini S, Bansal MP. Alterations in selenium status influences reproductive potential of male mice by modulation of transcription factor NFkappaβ. Biometals 2007;20:49–59.

    Article  PubMed  CAS  Google Scholar 

  • Storey KB. Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 1996;29:1715–33.

    CAS  Google Scholar 

  • Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohe L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999;285:1393–6.

    Article  PubMed  CAS  Google Scholar 

  • Vega L, Rodríguez-Sosa M, García-Montalvo EA, Del Razo LM, Elizondo G. Non-optimal levels of dietary selenomethionine alter splenocyte response and modify oxidative stress markers in female mice. Food Chem Toxicol 2007;45:1147–53.

    Article  PubMed  CAS  Google Scholar 

  • Wallace E, Calvin HI, Cooper GW. Progressive defects observed in mouse sperm during the course of three generations of selenium deficiency. Gamete Res 1983;4:377–87.

    Article  Google Scholar 

  • Ward WS, Kimura Y, Yanagimachi R. An intact sperm nuclear matrix may be necessary for the mouse paternal genome to participate in embryonic development. Biol Reprod 1999;60:702–6.

    Article  PubMed  CAS  Google Scholar 

  • Whittingham DG. Culture of mouse ova. J Reprod Fertil 1971;14:7–21.

    CAS  Google Scholar 

  • World Health Organization (WHO). Laboratory manual for the examination of human semen and semen-cervical mucus interaction, 4th edn. University Press, Cambridge, New York; 2001.

    Google Scholar 

  • Wu AS, Oldfield JE, Shull LR, Cheeke PR. Specific effect of selenium deficiency on rat sperm. Biol Reprod 1979;20:793–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Rodolfo Paredes-Díaz from Electronic Microscopic Unit of Cellular Physiology of UNAM, México for helping with electron microscopic analysis. The authors also thank Belem Piña-Guzmán and Angel Barrera-Hernández from Cinvestav, México for their assistance in the assessment of sperm parameters and care of animals, respectively. EAGM and JAIV were recipients of a Conacyt-México scholarship number 163334 and 170210, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Del Razo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Gutiérrez, M., García-Montalvo, E.A., Izquierdo-Vega, J.A. et al. Effect of dietary selenium deficiency on the in vitro fertilizing ability of mice spermatozoa. Cell Biol Toxicol 24, 321–329 (2008). https://doi.org/10.1007/s10565-007-9044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9044-8

Keywords

Navigation