Skip to main content

Advertisement

Log in

Mitochondrial perturbation attenuates bile acid-induced cytotoxicity

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Hydrophobic bile acids such as deoxycholate (DOC) are known to damage liver cells during cholestasis and promote colon cancer. Cellular stresses induced by bile acids, which include mitochondrial and endoplasmic reticulum (ER) stresses, can result in apoptosis. We found that inhibition of mitochondrial complexes I–V with rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, myxothiazol or oligomycin strongly protected against DOC-induced apoptosis of HCT-116 cells. To understand the mechanism of this protection, we explored the ability of these specific inhibitors to reduce DOC-induced mitochondrial and ER stresses. Different inhibitors markedly reduced DOC-induction of mitochondrial condensation, the DOC-induced decrease in mitochondrial membrane potential and the DOC-induced dilatation of the ER (evidence of ER stress). A dramatic induction of nucleolar segregation by antimycin A and myxothiazol, two distinct complex III inhibitors, was also observed. These findings strongly implicate mitochondrial crosstalk with apoptotic signaling pathways and mitochondrial–nucleolar crosstalk in the development of apoptosis resistance in the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOC:

deoxycholate

ER:

endoplasmic reticulum

GI:

gastrointestinal

MMP:

mitochondrial membrane potential

NaN3 :

sodium azide

ROS:

reactive oxygen species

TEM:

transmission electron microscopy

TTFA:

thenoyltrifluoroacetone

References

  • Al-Baker EA, Boyle J, Harry R, Kill IR. A p53-independent pathway regulates nucleolar segregation and antigen translocation in response to DNA damage induced by UV irradiation. Exp Cell Res. 2004;29:179–86.

    Google Scholar 

  • Allgayer H, Kolb M, Stuber V, Kruis W. Effects of bile acids on base hydroxylation in a model of human colonic mucosal DNA. Cancer Detect Prev. 2002;26:85–9.

    Article  PubMed  CAS  Google Scholar 

  • Allinger UG, Johansson GK, Gustafsson JA, Rafter JJ. Shift from a mixed to a lactovegetarian diet: influence on acidic lipids in fecal water –potential risk factor for colon cancer. Am J Clin Nutr. 1989;50:992–6.

    PubMed  CAS  Google Scholar 

  • Attili AF, Angelico M, Cantafora A, Alvaro D, Capocaccia L. Bile acid-induced liver toxicity: relation to the hydrophobic–hydrophilic balance of bile acids. Med. Hypotheses. 1986;19:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem. 1999;274:16188–97.

    Article  PubMed  CAS  Google Scholar 

  • Bayerdorffer E, Mannes GA, Richter WO, et al. Increased serum deoxycholic acid levels in men with colorectal adenomas. Gastroenterology. 1993;104:145–51.

    PubMed  CAS  Google Scholar 

  • Bayerdorffer E, Mannes GA, Richter WO, et al. Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 1995;36:268–73.

    PubMed  CAS  Google Scholar 

  • Beckmann JS, Ye Y-Z, Anderson PG, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe-Seyler. 1994;375:81–8.

    PubMed  CAS  Google Scholar 

  • Beilstein M, Silberg D. Cellular and molecular mechanisms responsible for progression of Barrettapos;s metaplasia to esophageal carcinoma. Gastroenterol Clin North Am. 2002;31:461–79.

    Article  PubMed  Google Scholar 

  • Bennett MC, Mlady GW, Kwon Y-H, Rose GM. Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase. J Neurochem. 1996;66:2606–11.

    PubMed  CAS  Google Scholar 

  • Bernstein C, Bernstein H, Garewal H, et al. A bile acid-induced apoptosis assay for colon cancer risk, and associated quality control studies. Cancer Res. 1999a;59:2353–7.

    CAS  Google Scholar 

  • Bernstein H, Payne CM, Bernstein C, Schneider J, Beard SE, Crowley CL. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett. 1999b:108:37–46.

  • Bernstein H, Holubec H, Warneke JA, et al. Patchy field defects of apoptosis resistance and dedifferentiation in flat mucosa of colon resections from colon cancer patients. Ann Surg Oncol. 2002;9:505–17.

    Article  PubMed  Google Scholar 

  • Beuers U, Denk GU, Soroka CJ, et al. Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets. J Biol Chem. 2003;278:17810–8.

    Article  PubMed  CAS  Google Scholar 

  • Birkenkamp-Demtroder K, Christensen LL, Olesen SH, et al. Gene expression in colorectal cancer. Cancer Res. 2002;62:4352–63.

    PubMed  CAS  Google Scholar 

  • Bjorkhem I, Eggertsen G. Genes involved in initial steps of bile acid synthesis. Curr Opin Lipidol. 2001;12:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Booth LA, Bilton RF. Genotoxic potential of the secondary bile acids: a role for reactive oxygen species, In: Aruoma OI, Halliwell B, eds. DNA and free radicals: Techniques, mechanisms and applications. London: OICA International; 2001:161–77.

  • Boya P, Cohen I, Zamzami N, Vieira HL, Kroemer G. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ. 2002;9:465–67.

    Article  PubMed  CAS  Google Scholar 

  • Brambilla L, Cantoni O. Mitochondrial formation of hydrogen peroxide is causally linked to the antimycin A-mediated prevention of tert-butylhydroperoxide-induced U937 cell death. FEBS Lett. 1998;431:245–9.

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22:8608–18.

    Article  PubMed  CAS  Google Scholar 

  • Chauvin C, De Oliveira F, Ronot X, et al. Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem. 2001;276:41394-8.

    Google Scholar 

  • Craven PA, Pfanstiel J, Saito R, DeRubertis FR. Actions of sulfasalazine and 5-aminosalicylic acid as reactive oxygen scavengers in the suppression of bile acid-induced increases in colonic epithelial cell loss and proliferative activity. Gastroenterology. 1987;92:1998–2008.

    PubMed  CAS  Google Scholar 

  • Crowley CL, Payne CM, Bernstein H, Bernstein C, Roe D. The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate. Cell Death Differ. 2000;7:314–26.

    Article  PubMed  CAS  Google Scholar 

  • Crowley-Weber CL, Payne CM, Gleason-Guzman M, et al. Development and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress inducer, deoxycholate. Carcinogenesis. 2002;23:2063–80.

    Article  PubMed  CAS  Google Scholar 

  • Crowley-Weber CL, Dvorakova K, Crowley C, et al. Nicotine increases oxidative stress, activates NF-κB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate: relevance to colon carcinogenesis. Chem Biol Interact. 2003;145:53–66.

    Article  PubMed  CAS  Google Scholar 

  • Daniel PT. Dissecting the pathways to death. Leukemia. 2000;14:2035–44.

    Article  PubMed  CAS  Google Scholar 

  • Davermann D, Martinez M, McKoy J, et al. Impaired mitochondrial function protects against free radical-mediated death. Free Radic Biol Med. 2002;33:1209–20.

    Article  PubMed  CAS  Google Scholar 

  • De Kok TM, van Faassen A, Glinghammar B, et al. Bile acid concentrations, cytotoxicity, and pH of fecal water from patients with colorectal adenomas. Dig Dis Sci. 1999;44:2218–25.

    Article  PubMed  CAS  Google Scholar 

  • DeGraaf AO, Meijerink JPP, Van den Heuvel LP, et al. Bcl-2 protects against apoptosis induced by antimycin A and bongkrekic acid without restoring cellular ATP levels. Biochim Biophys Acta 2002;1554:57–65.

    CAS  Google Scholar 

  • DeRubertis FR, Craven PA, Saito R. Bile salt stimulation of colonic epithelial proliferation. Evidence for involvement of lipoxygenase products. J Clin Invest. 1984;74:1614–24.

    CAS  Google Scholar 

  • Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–77.

    Article  PubMed  CAS  Google Scholar 

  • Dirsch VM, Muller IM, Eichhorst ST, et al. Cephalostatin 1 selectively triggers the release of Smac/DIABLO and subsequent apoptosis that is characterized by an increased density of the mitochondrial matrix. Cancer Res. 2003;63:8869–76.

    PubMed  CAS  Google Scholar 

  • Dvorakova K, Waltmire CN, Payne CM, et al. Induction of mitochondrial changes in myeloma cells by imexon. Blood. 2001;97:3549–51.

    Article  Google Scholar 

  • Epstein CB, Waddle JA, Hale W 4th, et al. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell. 2001;12:297–308.

    PubMed  CAS  Google Scholar 

  • Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nature Cell Biol. 2001;3:E255–63.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald RC, Farthing MJ. The pathogenesis of Barrettapos;s esophagus. Gastrointest Endosc Clin North Am. 2003;13:233–55.

    Google Scholar 

  • Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84:131–41.

    Article  PubMed  CAS  Google Scholar 

  • Galitovsky VE, Gogvadze VG. Inhibitors of mitochondrial energy production prevent DNA internucleosomal fragmentation in thymocytes. Biochemistry. 1998;63:1374–7.

    PubMed  CAS  Google Scholar 

  • Garewal H, Bernstein H, Bernstein C, Sampliner R, Payne C. Reduced bile acid-apoptosis in “normal” colorectal mucosa: a potential biological marker for cancer risk. Cancer Res. 1996;56:1480–3.

    PubMed  CAS  Google Scholar 

  • Glinghammar B, Inoue H, Rafter JJ. Deoxycholate causes DNA damage in colonic cells with subsequent induction of caspases, COX-2 promoter activity and the transcription factors NF-κB and AP-1. Carcinogenesis. 2002;23:839–45.

    Article  PubMed  CAS  Google Scholar 

  • Gores GJ, Miyoshi H, Botla R, Aquilar HI, Bronk SF. Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases. Biochim Biophys Acta 1998;1366:167–75.

    PubMed  CAS  Google Scholar 

  • Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003;10:709–17.

    Article  PubMed  CAS  Google Scholar 

  • Greim H, Trulzsch D, Czygan P, et al. Mechanism of cholestasis. 6. Bile acids in human livers with or without biliary obstruction. Gastroenterology. 1972;63:846–50.

    PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.

    PubMed  CAS  Google Scholar 

  • Guicciardi ME, Gores GJ. Bile acid-mediated hepatocyte apoptosis and cholestatic liver disease. Dig Liver Dis. 2002;34:387–92.

    Article  PubMed  CAS  Google Scholar 

  • Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966;30:269–97.

    Article  PubMed  CAS  Google Scholar 

  • Hackenbrock CR. Ultrastuctural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformation in mitochondria. J Cell Biol. 1968;37:345–69.

    Article  PubMed  CAS  Google Scholar 

  • Hacki J, Egger L, Monney L, et al. Apoptotic crosstalk between endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene. 2000;19:2286–95.

    PubMed  CAS  Google Scholar 

  • Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–69.

    Article  PubMed  CAS  Google Scholar 

  • Horky M, Kotala V, Anton M, Wesierska-Gadek J. Nucleolus and apoptosis. Ann NY Acad Sci. 2002;973:258–64.

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Milner J. Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev. 2003;17:832–7.

    Article  PubMed  CAS  Google Scholar 

  • Kandell RL, Bernstein C. Bile salt/acid induction of DNA damage in bacterial and mammalian cells. Implications for colon cancer. Nutr Cancer 1991;16:227–38.

    CAS  Google Scholar 

  • Kauer WK, Peters JH, DeMeester TR, et al. Composition and concentrations of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery. 1997;122:874-81.

    Google Scholar 

  • Kauer BS, Triadafilopoulos G. Acid- and bile-induced PGE(2) release and hyperproliferation in Barrettapos;s esophagus are COX-2 and PKC-epsilon dependent. Am J Physiol Gastrointest Liver Physiol. 2002;283:G327–34.

    Google Scholar 

  • King MA, Radicchi-Mastroianni MA. Antimycin A-induced apoptosis of HL-60 cells. Cytometry 2002;49:106–12.

    PubMed  CAS  Google Scholar 

  • Klibanov SA, OAPOS;Hagan HM, Ljungman M. Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress. J Cell Sci. 2001;114:1867–73.

    PubMed  CAS  Google Scholar 

  • Krahenbuhl S, Stucki J, Reichen J. Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology. 1992;15:1160–66.

    PubMed  CAS  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol, Today. 1997;18:44–51.

    Article  CAS  Google Scholar 

  • Kulkarni MS, Cox BA, Yielding KL. Requirements for induction of DNA strand breaks by lithocholic acid. Cancer Res. 1982;42:2792–5.

    PubMed  CAS  Google Scholar 

  • Lamireau T, Zoltowska M, Levy E, et al. Effects of bile acids on biliary epithelial cells: proliferation, cytotoxicity, and cytokine secretion. Life Sci. 2003;72:1401–11.

    Article  PubMed  CAS  Google Scholar 

  • Leary SC, Hill BC, Lyons CN, et al. Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation. J Biol Chem. 2002;277:11321–8.

    Article  PubMed  CAS  Google Scholar 

  • Leung AKL, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Review article. Biochem J. 2003;376:553–69.

    CAS  Google Scholar 

  • Loschen G, Flohe L, Chance B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett. 1971;18:261–4.

    Article  PubMed  CAS  Google Scholar 

  • Loschen G, Azzi A, Richter C, Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 1974;42:68–72.

    Article  PubMed  CAS  Google Scholar 

  • Monks NR, Biswas DK, Pardee AB. Blocking anti-apoptosis as a strategy for cancer chemotherapy: NF-kappaB as a target. J Cell Biochem. 2004;92:646–50.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403:98–103.

    PubMed  CAS  Google Scholar 

  • Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 2005;5:297–309.

    Article  PubMed  CAS  Google Scholar 

  • Olson MO, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. Int Rev Cytol. 2002;219:199–266.

    PubMed  CAS  Google Scholar 

  • Olson MOJ, Dundr M, Szebeni A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 2000;10:189–96.

    Article  PubMed  CAS  Google Scholar 

  • Palmeira CM, Rolo AP. Mini-Review. Mitochondrially-mediated toxicity of bile acids. Toxicology. 2004;203:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Payne CM, Bernstein C, Bernstein H. Apoptosis overview emphasizing oxidative stress, DNA damage and signal-transduction pathways. Leuk Lymphoma. 1995b;19:43–93.

    Article  CAS  Google Scholar 

  • Payne CM, Bernstein H, Bernstein C, Garewal H. Role of apoptosis in biology and pathology: resistance to apoptosis in colon carcinogenesis. Ultrastruct Pathol. 1995a;19:221–48.

    Article  CAS  Google Scholar 

  • Payne CM, Bjore CG Jr, Schultz DA. Change in the frequency of apoptosis after low- and high-dose X-irradiation of human lymphocytes. J. Leukoc Biol. 1992;52:433–40.

    PubMed  CAS  Google Scholar 

  • Payne CM, Crowley C, Washo-Stultz D, et al. The stress-response proteins poly(ADP-ribose) polymerase and NF-κB protect against bile salt-induced apoptosis. Cell Death Differ. 1998;5:623–36.

    Article  PubMed  CAS  Google Scholar 

  • Payne CM, Waltmire CN, Crowley C, et al. Caspase-6 mediated cleavage of guanylate cyclase alpha 1 during deoxycholate-induced apoptosis: Protective role of the nitric oxide signaling module. Cell Biol Toxicol. 2003;19:373–92.

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Ferrari D, Rapizzi E, et al. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 2001;20:2690–701.

    Article  PubMed  CAS  Google Scholar 

  • Pool-Zobel BL, Leucht U. Induction of DNA damage by risk factors of colon cancer in human colon cells derived from biopsies. Mutat Res. 1997;375:105–15.

    PubMed  CAS  Google Scholar 

  • Powolny A, Xu J, Loo G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int J Biochem Cell Biol. 2001;33:193–203.

    Article  PubMed  CAS  Google Scholar 

  • Raha S, McEachern GE, Myint AT, Robinson BH. Superoxides from mitochondrial complex III: he role of manganese superoxide dismutase. Free Radic Biol Med. 2000;29:170–80.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay RR, Ackrell BAC, Coles CJ, Singer TP, White GA, Thorn GD. Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex II. Proc Natl Acad Sci USA. 1981;78:825–8.

    PubMed  CAS  Google Scholar 

  • Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 2004a;11:372–80.

    Article  CAS  Google Scholar 

  • Rao RV, Peel A, Logvinova A, et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 2002;514:122–8.

    PubMed  CAS  Google Scholar 

  • Rao RV, Poksay KS, Castro-Obregon S, et al. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem. 2004b;279:177–87.

    CAS  Google Scholar 

  • Reddy BS, Watanabe K, Weisburger JH, Wynder EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1977;37:3238–42.

    PubMed  CAS  Google Scholar 

  • Reddy RK, Mao C, Baumeister P, et al. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem. 2003;278:20915–24.

    PubMed  CAS  Google Scholar 

  • Ricci J-E, Waterhouse N, Green DR. Mitochondrial functions during cell death, a complex (I–V) dilemma. Cell Death Differ. 2003;10:488–92.

    Article  PubMed  CAS  Google Scholar 

  • Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM. Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestatic therapy. Toxicol Sci. 2000;57:177–85.

    Article  PubMed  CAS  Google Scholar 

  • Romagnolo DF, Chirnomas RB, Ku J, et al. Deoxycholate, an endogenous tumor promoter and DNA damaging agent, modulates BRCA-1 expression in apoptosis-sensitive epithelial cells: loss of BRCA-1 expression in colonic adenocarcinomas. Nutr Cancer 2003;46:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 2003;22:6068–77.

    PubMed  CAS  Google Scholar 

  • Scherl A, Coute Y, Deon C, et al. Functional proteomic analysis of human nucleolus. Mol Biol Cell. 2002;13:4100–9.

    Article  PubMed  CAS  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappaB transcription factor and HIV-1. EMBO J. 1991;10:2247–58.

    PubMed  CAS  Google Scholar 

  • Schuler M, Maurer U, Goldstein JC, et al. p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ. 2003;10:451–60.

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 1993;12:3095–104.

    PubMed  CAS  Google Scholar 

  • Searle J, Kerr JFR, Bishop CJ. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu. 1982;17:229–59.

    PubMed  Google Scholar 

  • Shchepina LA, Pletjushkina OY, Avetisyan AV, et al. Oligomycin, inhibitor of the F0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis. Oncogene. 2002;21:8149–57.

    Article  PubMed  CAS  Google Scholar 

  • Shou Y, Gunasekar PG, Borowitz JL, Isom GE. Cyanide-induced apoptosis involves oxidative-stress-activated NF-kappaB in cortical neurons. Toxicol Appl Pharmacol 2000;164:196–205.

    Article  PubMed  CAS  Google Scholar 

  • Sokol RJ, Winklhofer-Roob BM, Devereaux MW, McKim Jr JM. Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology. 1995;109:1249–56.

    Article  PubMed  CAS  Google Scholar 

  • Stadler J, Stern HS, Yeung KS, et al. Effect of high fat consumption on cell proliferation activity of colorectal mucosa and on soluble faecal bile acids. Gut. 1988;29:1326–31.

    PubMed  CAS  Google Scholar 

  • Stamp DH. Three hypotheses linking bile to carcinogenesis in the gastrointestinal tract: certain bile salts have properties that may be used to complement chemotherapy. Med Hypotheses. 2002;59:398–405.

    Article  PubMed  CAS  Google Scholar 

  • Stefanelli C, Bonavita F, Stanic I, et al. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis. Biochem J. 1997;322:909–17.

    PubMed  CAS  Google Scholar 

  • Triadafilopoulos G. Acid and bile reflux in Barrettapos;s esophagus: a tale of two evils. Gastroenterology. 2001;121:1502–6.

    PubMed  CAS  Google Scholar 

  • Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Repo 1997;17:3–8.

    CAS  Google Scholar 

  • Venturi M, Hambly RJ, Glinghammer B, Rafter JJ, Rowland IR. Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis. 1997;18:2353–9.

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Lutter R, Dupois A, Runswick MJ. Identification of the subunits of F1F0-ATPase from bovine heart mitochondria. Biochemistry 1991;30:5369–78.

    PubMed  CAS  Google Scholar 

  • Wang S, El-Deiry WS. Cytochrome c. A crosslink between the mitochondria and the endoplasmic reticulum in calcium-dependent apoptosis. Cancer Biol Ther 2004;3:44–6.

    PubMed  Google Scholar 

  • Washo-Stultz D, Crowley C, Payne CM, et al. Increased susceptibility of cells to inducible apoptosis during growth from early to late log phase: an important caveat for in vitro apoptosis research. Toxicol Lett. 2000;116:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Washo-Stultz D, Crowley-Weber CL, Dvorakova K, et al. Role of mitochondrial complexes I and II, reactive oxygen species and arachidonic acid metabolism in deoxycholate-induced apoptosis. Cancer Lett. 2002;177:129–44.

    Article  PubMed  CAS  Google Scholar 

  • Washo-Stultz D, Hoglen N, Bernstein H, Bernstein C, Payne CM. Role of nitric oxide and peroxynitrite in bile salt-induced apoptosis: relevance to colon carcinogenesis. Nutr Cancer. 1999;35:180–8.

    Article  PubMed  CAS  Google Scholar 

  • Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett. 1994;339:40–4.

    Article  PubMed  CAS  Google Scholar 

  • Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandoraapos;s box opens. Nat Rev Mol Cell Biol. 2001;2:67–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Payne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, C.M., Crowley-Weber, C.L., Dvorak, K. et al. Mitochondrial perturbation attenuates bile acid-induced cytotoxicity. Cell Biol Toxicol 21, 215–231 (2005). https://doi.org/10.1007/s10565-005-0166-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-005-0166-6

Key Words

Navigation