Skip to main content

Advertisement

Log in

MoS2/NiTiO3 Heterojunctions as Photocatalysts: Improved Charge Separation for Promoting Photocatalytic Hydrogen Production Activity

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this study, a novel molybdenum disulfide modified nickel titanate composite photocatalyst MoS2/NiTiO3 was designed and synthesized by a simple hydrothermal method. The petal-like MoS2 is highly dispersive, which provides many active sites. The photocatalytic activity of MoS2/NiTiO3 for hydrogen evolution is better than that of pure MoS2 and NiTiO3 nanosheets. The hydrogen evolution amount of MoS2/NiTiO3 is 300.43 μmol, which is 5.3 and 1.9 times higher than of pure NiTiO3 and MoS2, respectively. In addition, the catalyst 7% MoS2/NiTiO3 has good stability through cyclic experiments. The results of photoluminescence spectroscopy and photoelectrochemical measurements show that the introduction of MoS2 accelerates the separation and transfer efficiency of photogenerated electrons. We have also proposed new discoveries for charge transfer mechanism of MoS2/NiTiO3 composite catalyst, which will provide a novel way to develop simple and inexpensive photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chang CJ, Lin YG, Weng HT et al (2018) Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO–ZnS/graphene photocatalysts. Appl Surf Sci 451:198–206

    CAS  Google Scholar 

  2. Huang HC, Yang CL, Wang MS et al (2019) Chalcogens doped BaTiO3 for visible light photocatalytic hydrogen production from water splitting. Spectrochim Acta A 208:65–72

    CAS  Google Scholar 

  3. Xin Z, Li L, Zhang W et al (2018) Synthesis of ZnS@CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method. Mol Catal 447:1–12

    CAS  Google Scholar 

  4. Zhou JB, Chen D, Bai LQ, Qin LS et al (2018) Decoration of WS2 as an effective noble-metal free cocatalyst on ZnIn2S4 for enhanced visible light photocatalytic hydrogen evolution. Int J Hydrog Energy 43:18261–18269

    CAS  Google Scholar 

  5. Du H, Liu YN, Shen CC et al (2017) Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chin J Catal 38(8):1295–1306

    CAS  Google Scholar 

  6. Qin Z, Xue F, Chen Y et al (2017) Spatial charge separation of one-dimensional Ni2P–Cd0.9Zn0.1S/g-C3N4, heterostructure for high-quantum-yield photocatalytic hydrogen production. Appl Catal B 217:551–559

    CAS  Google Scholar 

  7. Zhang H, Chen G, Li Y et al (2010) Electronic structure and photocatalytic properties of copper-doped CaTiO. Int J Hydrog Energy 35(7):2713–2716

    CAS  Google Scholar 

  8. Lozano-Sánchez LM, Obregón S, Díaz-Torres LA et al (2015) Visible and near-infrared light-driven photocatalytic activity of erbium-doped CaTiO3 system. J Mol Catal A 410:19–25

    Google Scholar 

  9. Dong W, Song B, Meng W et al (2015) A simple solvothermal process to synthesize CaTiO3 microspheres and its photocatalytic properties. Appl Surf Sci 349:272–278

    CAS  Google Scholar 

  10. Han J, Liu Y, Dai F et al (2018) Fabrication of CdSe/CaTiO3, nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Appl Surf Sci 459:520–526

    CAS  Google Scholar 

  11. Wang R, Ni S, Liu G et al (2018) Hollow CaTiO3 cubes modified by La/Cr co-doping for efficient photocatalytic hydrogen production. Appl Catal B 225:139–147

    CAS  Google Scholar 

  12. Pham TT, Kang SG, Shin EW (2017) Optical and structural properties of Mo-doped NiTiO3, materials synthesized via modified Pechini methods. Appl Surf Sci 411:18–26

    CAS  Google Scholar 

  13. Pishch IV, Radion EV (2003) Production of pigments with a perovskite-like structure based on nickel titanate by the precipitation method. Glass Ceram 60:154–157

    CAS  Google Scholar 

  14. Pal N, Saha B, Kundu SK et al (2015) A highly efficient non-enzymatic glucose biosensor based on nanostructured NiTiO3/NiO material. N J Chem 39(10):8035–8043

    CAS  Google Scholar 

  15. Lin YJ, Chang YH, Chen GJ et al (2009) Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. J Alloys Compd 479(1–2):785–790

    CAS  Google Scholar 

  16. Yang Q, Wei Z, Ren Z et al (2012) Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance. J Mater Chem 22(32):16471–16476

    Google Scholar 

  17. Ni Y, Wang X, Hong J (2009) Nickel titanate microtubes constructed by nearly spherical nanoparticles: preparation, characterization and properties. Mater Res Bull 44(8):1797–1801

    CAS  Google Scholar 

  18. Yuan YJ, Lu HW, Yu ZT et al (2015) Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. ChemSusChem 8(24):4113–4127

    CAS  PubMed  Google Scholar 

  19. Amaranatha Reddy D, Kim EH, Gopanagari M et al (2019) Few layered black phosphorus/MoS2 nanohybrid: a promising co-catalyst for solar driven hydrogen evolution. Appl Catal B 241:491–498

    Google Scholar 

  20. Zhang Z, Huang L, Zhang J et al (2018) In situ constructing interfacial contact MoS2/ZnIn2S4, heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl Catal B 233:112–119

    CAS  Google Scholar 

  21. Iqbal S, Pan Z, Zhou K (2017) Enhanced photocatalytic hydrogen evolution from in-situ formation of few-layered MoS2/CdS nanosheets Van der Waals heterostructures. Nanoscale 9(20):6638

    CAS  PubMed  Google Scholar 

  22. Li X, Guo S, Kan C et al (2016) Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy 30:549–558

    CAS  Google Scholar 

  23. Wang JM, Luo J, Liu D et al (2019) One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl Catal B 241:130–140

    CAS  Google Scholar 

  24. Li M, Yin S, Wu T et al (2018) Controlled preparation of MoS2/PbBiO2 I hybrid microspheres with enhanced visible-light photocatalytic behavior. J Colloid Interface Sci 517:278–287

    CAS  PubMed  Google Scholar 

  25. Min S, Hou J, Lei Y (2017) Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Appl Surf Sci 396:1375–1382

    CAS  Google Scholar 

  26. Kim S-R, Jo W-K (2019) Application of a photostable silver-assisted Z-scheme NiTiO3 nanorod/g-C3N4 nanocomposite for efficient hydrogen generation. Int J Hydrog Energy 44:801–808

    CAS  Google Scholar 

  27. Inceesungvorn B, Teeranunpong T, Nunkaew J et al (2014) Novel NiTiO3/Ag3VO4 composite with enhanced photocatalytic performance under visible light. Catal Commun 54:35–38

    CAS  Google Scholar 

  28. Jiang DL, Wen BW, Zhang YQ et al (2019) MoS2/SnNb2O6 2D/2D nanosheet heterojunctions with enhanced interfacial charge separation for boosting photocatalytic hydrogen evolution. J Colloid Interface Sci 536:1–8

    CAS  PubMed  Google Scholar 

  29. Zhang X, Guo Y, Tian J et al (2018) Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity. Appl Catal B 232:355–364

    CAS  Google Scholar 

  30. Liu Y, Li Y, Peng F, Lin Y et al (2019) 2H- and 1T-mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl Catal B 241:236–245

    CAS  Google Scholar 

  31. Li Y, Yin K, Wang L et al (2018) Engineering MoS2, nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl Catal B 239:537–544

    CAS  Google Scholar 

  32. Hao X, Cui Z, Zhou J et al (2018) Architecture of high efficient zinc vacancy mediated Z-scheme photocatalyst from metal-organic frameworks. Nano Energy 52:105–116

    CAS  Google Scholar 

  33. Zhang Y, Wang G, Ma W et al (2018) CdS p–n heterojunction co-boosting with Co3O4 and Ni-MOF-74 for photocatalytic hydrogen evolution. Dalton Trans 47:11176–11189

    CAS  PubMed  Google Scholar 

  34. Hao X, Jin Z, Yang H et al (2017) Peculiar synergetic effect of MoS2, quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl Catal B 210:45–56

    CAS  Google Scholar 

  35. Yu J, Qi L, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114(30):13118–13125

    CAS  Google Scholar 

  36. Wang XJ, Li XL, Liu C (2018) Metalloid Ni2P and its behavior for boosting the photocatalytic hydrogen evolution of CaIn2S4. Int J Hydrog Energy 43:219–228

    CAS  Google Scholar 

  37. Wen J, Xie J, Yang Z (2017) Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nanocarbons. ACS Sustain Chem Eng 5(3):2224–2236

    CAS  Google Scholar 

  38. Yuan YJ, Li Z, Wu S et al (2018) Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D–2D MoS2/CdS photocatalysts for H2 production. Chem Eng J 350:335–343

    CAS  Google Scholar 

  39. Liu D, Jin Z, Bi Y (2017) Charge transmission channel construction between MOF and rGO by means of Co–Mo–S modification. Catal Sci Technol 7:4478–4488

    CAS  Google Scholar 

  40. Liu D, Jin Z, Zhang Y et al (2018) Light harvesting and charge management by Ni4S3, modified metal–organic frameworks and rGO in the process of photocatalysis. J Colloid Interface Sci 529:44–52

    CAS  PubMed  Google Scholar 

  41. Hong S, Kumar DP, Kim EH et al (2017) Earth abundant transition metal-doped few-layered MoS2 nanosheets on CdS nanorods for ultra-efficient photocatalytic hydrogen production. J Mater Chem A. https://doi.org/10.1039/C7TA06556F

    Article  Google Scholar 

  42. Yuan YJ, Wang P, Li Z et al (2019) The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D–2D black phosphorus/MoS2 photocatalyst. Appl Catal B 242:1–8

    CAS  Google Scholar 

  43. Zhang Y, Jin Z (2019) Effective electron–hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution. Phys Chem Chem Phys 21:8326–8341

    CAS  PubMed  Google Scholar 

  44. Min S, Wang F, Lu G (2016) Graphene-induced spatial charge separation for selective water splitting over TiO2 photocatalyst. Catal Commun 80:28–32

    CAS  Google Scholar 

  45. Diab KR, El-Maghrabi HH, Nada AA et al (2018) Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. J Photochem Photobiol A 365:86–93

    Google Scholar 

  46. Lakhera SK, Hafeez HY, Veluswamy P et al (2018) Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.02.136

    Article  Google Scholar 

  47. Guan J, Wu J, Jiang D et al (2018) Hybridizing MoS2, and C60, via a van der Waals heterostructure toward synergistically enhanced visible light photocatalytic hydrogen production activity. Int J Hydrog Energy 43(18):8698–8706

    CAS  Google Scholar 

  48. Liu Z, Xu J, Li Y, Yu H (2017) High performance photocatalytic based on Ce doped CoWO4: controllable synthesis and enhanced photocatalytic activity. Catal Lett 148:3205–3213

    Google Scholar 

  49. Min S, Lei Y, Sun H, Hou J, Wang F (2017) Amorphous WSx as an efficient cocatalyst grown on CdS nanoparticles via photochemical deposition for enhanced visible-light-driven hydrogen evolution. Mol Catal 440:190–198

    CAS  Google Scholar 

  50. Wei RB, Huang ZL, Gu GH, Wang Z (2018) Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl Catal B 231:101–107

    CAS  Google Scholar 

  51. Xu J, Huo F, Zhao Y et al (2018) In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. Int J Hydrog Energy 43:1–9

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Ningxia Province (NZ17262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, J., Peng, M. et al. MoS2/NiTiO3 Heterojunctions as Photocatalysts: Improved Charge Separation for Promoting Photocatalytic Hydrogen Production Activity. Catal Surv Asia 23, 277–289 (2019). https://doi.org/10.1007/s10563-019-09282-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09282-4

Keywords

Navigation