Skip to main content

Advertisement

Log in

Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Nanocarbons find increasing relevance for the development of advanced, sometimes radically new, catalysts and catalytic electrodes. This perspective contribution discusses the potential of nanocarbons as a new class of catalytic materials, even if carbons (in the form mainly of active carbon materials) are already extensively applied as supports for catalysts. The control of nano-dimension and the improved understanding in tailoring the surface reactivity open new possibilities for their nano-engineering and the development of novel catalytic materials. With focus on the nature of the active sites in nanocarbon catalysts, we discuss here some of the novel possibilities opened by these materials to address the new challenges for catalysis deriving from moving to a more sustainable chemical and energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reimerink WMTM (1999) Stud Surf Sci Catal 120A:751

    CAS  Google Scholar 

  2. Calvino-Casilda V, Lopez-Peinado AJ, Duran-Valle CJ, Martin-Aranda RM (2010) Catal. Rev Sci Eng 52:325

    CAS  Google Scholar 

  3. Bandosz TJ (2008) In: Serp P, Figueiredo JL (Eds.), Carbon materials for catalysis, Wiley, Hoboken, p 45

  4. Juentgen H (1986) Fuel 65:1436

    CAS  Google Scholar 

  5. Rodríguez-Reinoso F (1998) Carbon 36:159

    Google Scholar 

  6. Su DS, Centi G, Perathoner S (2014) Chem Rev 113:5782

    Google Scholar 

  7. Su DS, Centi G (2013) J. Energy Chem. 22:151

    CAS  Google Scholar 

  8. Su DS, Centi G, Perathoner S (2012) Catal Today 186:1

    CAS  Google Scholar 

  9. Ampelli C, Perathoner S, Centi G (2014) Chinese. J Catal 35:783

    CAS  Google Scholar 

  10. Mleczko L, Lolli G (2013) Angew Chem Int Ed 52:9372

    CAS  Google Scholar 

  11. Vilatela JJ, Eder D (2012) Chem Sus Chem 5:456

    CAS  Google Scholar 

  12. Su CL, Loh KP (2013) Acc Chem Res 4:2275

    Google Scholar 

  13. Dreyer DR, Bielawski CW (2011) Chem Sci 2:1233

    CAS  Google Scholar 

  14. Zhang Y, Zhang J, Su DS (2014) Chem Sus Chem 7:1240

    CAS  Google Scholar 

  15. Wang D-W, Su DS (2014) Energy & Env. Science 7:576

    Google Scholar 

  16. Su DS, Centi G, (2012) Rios G, Centi G, Kanellopoulos N (Eds.), In: Nanoporous materials for energy and the environment, Ch. 9, Pan Stanford Pub, Singapore, p 173

  17. Centi G, Perathoner S (2010) Catal Today 150:151

    CAS  Google Scholar 

  18. Centi G, Perathoner S (2011) Chem Sus Chem 4:913

    CAS  Google Scholar 

  19. Schaetz A, Zeltner M, Stark WJ (2012) ACS Catal 2:1267

    CAS  Google Scholar 

  20. Su CL, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu PP, Bao QL, Enoki T, Chabal YJ, Loh KP (2012) Nat Commun 3:1298

  21. Bitter JH (2010) J Mater Chem 20:7312

    CAS  Google Scholar 

  22. Su DS, Schlögl R (2010) Chem Sus Chem 3:136

    CAS  Google Scholar 

  23. Umeyama T, Imahori H (2013) J Phys Chem C 117:3195

    CAS  Google Scholar 

  24. Sun HQ, Wang SB (2014) Energy Fuels 28:2

    Google Scholar 

  25. Schlögl R (2013) Adv Catal 56:103

    Google Scholar 

  26. Shearer CJ, Cherevan A, Eder D (2014) Adv Mater 26:2295

    CAS  Google Scholar 

  27. Maiti UN, Lee WJ, Lee JM, Oh Y, Kim JY, Kim JE, Shim J, Han TH, Kim SO (2014) Adv Mater 26:40

    CAS  Google Scholar 

  28. Nakamura J, Kondo T (2013) Top Catal 56:1560

    CAS  Google Scholar 

  29. Centi G, Perathoner S (2009) Eur J Inorg Chem 26:3851

    Google Scholar 

  30. Trogadas P, Fuller TF, Strasser P (2014) Carbon 75:5

    CAS  Google Scholar 

  31. Zhang LL, Gu Y, Zhao XS (2013) J Mat Chem A, 1:9395

  32. Kwon W, Kim J.-M, Rhee S.-W (2013) J Mat Chem A 1:3202

  33. Desimoni E, Brunetti B (2012) Electroanal. 24:1481

    CAS  Google Scholar 

  34. McCreery RL (2008) Chem Rev 108:2646

    CAS  Google Scholar 

  35. Centi G, Perathoner S (2011) Coord Chem Rev 255:1480

    CAS  Google Scholar 

  36. Zhang B, Su DS (2014) Small 10:222

    CAS  Google Scholar 

  37. Sun XA, Wang R, Su DS (2013) Chin J Catal 34:508

    CAS  Google Scholar 

  38. Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlögl R (2010) Chem Sus Chem 3:169

    CAS  Google Scholar 

  39. Zhang M, Dai L (2012) Nano Energy 1:514

    CAS  Google Scholar 

  40. Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao SZ (2012) Small 8:3550

    CAS  Google Scholar 

  41. Yu D, Nagelli E, Du F, Dai L (2010) J Phys Chem Lett 1:2165

    CAS  Google Scholar 

  42. Centi G, Lanzafame P, Perathoner S (2012) In: Guczi L, Erdôhelyi A (Eds.), Catalysis for alternative energy generation, Ch. 1, Springer, Berlin, p 1

  43. Centi G, Perathoner S (2008) Catal Today 138:69

    CAS  Google Scholar 

  44. Perathoner S, Centi G (2014) Chem Sus Chem 7:1274

    CAS  Google Scholar 

  45. Lanzafame P, Centi G, Perathoner S (2014) Chem Soc Rev. doi:10.1039/C3CS60396B

    Google Scholar 

  46. Lanzafame P, Centi G, Perathoner S (2014) Catal Today. doi:10.1016/j.cattod.2014.03.022

    Google Scholar 

  47. Perathoner S, Centi G (2014) J Chin Chem Soc. doi:10.1002/jccs.201400080

    Google Scholar 

  48. Cavani F, Centi G, Perathoner S, Trifirò F (2009) Sustainable industrial chemistry: principles tools and industrial examples. Wiley-VCH, Weinheim

    Google Scholar 

  49. Centi G, Perathoner S (2010) Chem Sus Chem 3:195

    CAS  Google Scholar 

  50. Quadrelli EA, Centi G, Duplan J-L, Perathoner S (2011) Chem Sus Chem 4:1194

    CAS  Google Scholar 

  51. Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G (2012) Chem Sus Chem 5:500

    CAS  Google Scholar 

  52. Genovese C, Ampelli C, Perathoner S, Centi G (2013) J Energy Chem 22:202

    CAS  Google Scholar 

  53. Genovese C, Ampelli C, Perathoner S, Centi G (2013) J Catal 308:237

    CAS  Google Scholar 

  54. Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M (2011) J Am Chem Soc 133:5129

    CAS  Google Scholar 

  55. Zhang J, Liu X, Blume R, Zhang AH, Schlögl R, Su DS (2008) Science 322:73

    CAS  Google Scholar 

  56. Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP, Science 335:835

  57. Centi G, Iaquaniello G, Perathoner S (2011) Chem Sus Chem 4:1265

    CAS  Google Scholar 

  58. Arrigo R, Schuster ME, Abate S, Wrabetz S, Amakawa K, Teschner D, Freni M, Centi G, Perathoner S, Hävecker M, Schlögl R (2014) Chem Sus Chem 7:179

    CAS  Google Scholar 

  59. Abate S, Freni M, Arrigo R, Schuster ME, Perathoner S, Centi G (2013) Chem Cat Chem 5:1899

    CAS  Google Scholar 

  60. Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA (2012) Chem Sus Chem 5:1549

    Google Scholar 

  61. Maldonado-Hodar FJ (2013) Catal Today 218:43

    Google Scholar 

  62. White RJ, Brun N, Budarin VL, Clark JH, Titirici MM (2014) Chem Sus Chem 7:670

  63. Centi G, Perathoner S (2014) In: Comprehensive inorganic chemistry II, Section 7.18 “Mixed-Metal Oxides”. doi:10.1016/B978-0-08-097774-4.00718-X

  64. Centi G, Perathoner S (2014) In: Nanocarbon-inorganic hybrids, Ch. 17, De Gruyter, Berlin, (in press)

  65. Wang H, Dai H (2013) Chem Soc Rev 42:3088

    CAS  Google Scholar 

  66. Ruitao L, Cruz-Silva E, Terrones M (2014) ACS Nano 8:4061

    Google Scholar 

  67. Centi G, Cavani F, Trifirò F (2001) Selective oxidation by heterogeneous catalysis, Springer (Kluwer Acad/Plenum Pub), Berlin

  68. Banhart F, Kotakoski J, Krasheninnikov AV (2011) ACS Nano 5:26

    CAS  Google Scholar 

  69. Arrigo R, Havecker M, Schlögl R, Su DS (2008) Chem Commun 40:4891

  70. Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott EPJ, Zeitler JA, Gladden LF, Knop-Gericke A, Schlögl R, Su DS (2010) J Am Chem Soc 132:9616

    CAS  Google Scholar 

  71. Figueiredo JL, Pereira MFR (2010) Catal Today 150:2

    CAS  Google Scholar 

  72. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337

    CAS  Google Scholar 

  73. Wang XQ, Liu R, Waje MM, Chen ZW, Yan YS, Bozhilov KN, Feng PY (2007) Chem Mater 19:2395

    CAS  Google Scholar 

  74. Villa A, Tessonnier JP, Majoulet O, Su DS, Schlögl R (2009) Chem Commun 29:4405

  75. Yuan XL, Zhang M, Chen XD, An NH, Liu G, Liu Y, Zhang WX, Yan WF, Jia MJ (2012) Appl Catal A 439–440:149

    Google Scholar 

  76. Kan-nari N, Okamura S, Fujita S, Ozaki J, Arai M (2010) Adv Synth Catal 352:1476

    CAS  Google Scholar 

  77. Dreyer DR, Bielawski CW (2011) Chem Sci 2:1233

    CAS  Google Scholar 

  78. Dreyer DR, Jia HP, Bielawski CW (2010) Angew Chem Int Ed 49:6813

    CAS  Google Scholar 

  79. Su CL, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu PP, Bao QL, Enoki T, Chabal YJ, Loh KP (2012) Nature Commun 3:1298

    Google Scholar 

  80. Chizari K, Deneuve A, Ersen O, Florea I, Liu Y, Edouard D, Janowska I, Begin D, Pham-Huu C (2012) Chem Sus Chem 5:102

    CAS  Google Scholar 

  81. Cuong D.-V, Truong-Phuoc L, Tran-Thanh T, Nhut J.-M, Nguyen-Dinh L, Janowska I, Begin D, Pham-Huu C (2014) Appl Catal A 482:397

  82. Sun F, Liu J, Chen H, Zhang Z, Qiao W, Long D, Ling L (2013) ACS Catal 3:862

    CAS  Google Scholar 

  83. Chen H, Sun F, Wang J, Li W, Qiao W, Ling L, Long D (2013) J Phys Chem C 117:8318

    CAS  Google Scholar 

  84. Liao S, Peng F, Yu H, Wang HN (2014) Appl Catal A 478:1

  85. Cao Y, Yu H, Peng F, Wang H (2014) ACS Catal 4:1617

    CAS  Google Scholar 

  86. Yu H, Peng F, Tan J, Hu XW, Wang HJ, Yang J, Zheng WX (2011) Angew Chem Int Ed 50:3978

    CAS  Google Scholar 

  87. Besson M, Blackburn A, Gallezot P, Kozynchenko O, Pigamo A, Tennison S (2000) Topics Catal 13:253

    CAS  Google Scholar 

  88. Kang ZH, Wang EB, Mao BD, Su ZM, Gao L, Niu L, Shan HY, Xu L (2006) Appl Catal A 299:212

    CAS  Google Scholar 

  89. Mestl G, Maksimova NI, Keller N, Roddatis VV, Schlögl R (2001) Angew Chem Int Ed 40:2066

    CAS  Google Scholar 

  90. Keller N, Maksimova NI, Roddatis VV, Schur M, Mestl G, Butenko YV, Kuznetsov VL, Schlögl R (2002) Angew Chem Int Ed 41:1885

    CAS  Google Scholar 

  91. Frank B, Zhang J, Blume R, Schlögl R, Su DS (2009) Angew Chem Int Ed 48:6913

    CAS  Google Scholar 

  92. Maciá-Agulló JA, Cazorla-Amorós D, Linares-Solano A, Wild U, Su DS, Schlögl R (2005) Catal Today 102–103:248

    Google Scholar 

  93. Zhang J, Su DS, Zhang AH, Wang D, Schlögl R, Hébert C (2007) Angew Chem Int Ed 46:7319

    CAS  Google Scholar 

  94. Zhang J, Su DS, Blume R, Schlögl R, Wang R, Yang X, Gajović A (2010) Angew Chem Int Ed 49:8640

    CAS  Google Scholar 

  95. Liu H, Diao J, Wang Q, Gu S, Chen T, Miao C, Yang W, Su DS (2014) Chem Commun 50:7810

    CAS  Google Scholar 

  96. Zhao Z, Dai Y (2014) J Mat Chem A 2:13442

  97. Qi W, Liu W, Zhang B, Gu X, Guo X, Su DS (2013) Angew Chem Int Ed 52:14224

    CAS  Google Scholar 

  98. Chen C, Zhang J, Zhang B, Yu C, Peng F, Su DS (2013) Chem Commun 49:8151

  99. Zhang J, Wang R, Liu E, Gao X, Sun Z, Xiao F-S, Girgsdies F, Su DS (2012) Angew Chem Int Ed 51:7581

    CAS  Google Scholar 

  100. Delgado JJ, Chen X-W, Frank B, Su DS, Schlögl R (2012) Catal Today 186:93

    CAS  Google Scholar 

  101. Wang L, Delgado JJ, Frank B, Zhang Z, Shan Z, Su DS, Xiao F-S (2012) Chem Sus Chem 5:687

    CAS  Google Scholar 

  102. Liu X, Frank B, Zhang W, Cotter TP, Schlögl R, Su DS (2011) Angew Chem Int Ed 50:3318

    CAS  Google Scholar 

  103. Frank B, Morassutto M, Schomäcker R, Schlögl R, Su D (2010) Chem Cat Chem 2:644

    CAS  Google Scholar 

  104. Su DS, Delgado JJ, Liu X, Wang D, Schlögl R, Wang L, Zhang Z, Shan Z, Xiao F-S (2009) Chem Asian J 4:1108

    CAS  Google Scholar 

  105. Zhang J, Wang X, Su Q, Zhi L, Thomas A, Feng X, Su DS, Schlögl R, Müllen K (2009) J Am Chem Soc 131:11296

    CAS  Google Scholar 

  106. Delgado JJ, Chen X, Tessonnier JP, Schuster ME, Del Rio E, Schlögl R, Su DS (2010) Catal Today 150:49

    CAS  Google Scholar 

  107. Rinaldi A, Zhang J, Frank B, Su DS, Abd SB (2010) Hamid, R. Schlögl, Chem Sus Chem 3:254

    CAS  Google Scholar 

  108. Mao SJ, Li B, Su DS (2014) J Mater Chem A 2:5287

    CAS  Google Scholar 

  109. Dathar GKP, Tsai Y-T, Gierszal K, Xu Y, Liang C, Rondinone AJ, Overbury SH, Schwartz V (2014) Chem Sus Chem 7:483

    CAS  Google Scholar 

  110. Frank B, Blume R, Rinaldi A, Trunschke A, Schlögl R (2011) Angew Chem Int Ed 50:10226

    CAS  Google Scholar 

  111. Zhong B, Liu H, Gu X, Su DS (2014) Chem Cat Chem 6:1553

    CAS  Google Scholar 

  112. Centi G, Gangeri M, Fiorello M, Perathoner S, Amadou J, Bégin D, Ledoux MJ, Pham-Huu C, Schuster ME, Su DS, Tessonnier J-P, Schlögl R (2009) Catal Today 147:287

    CAS  Google Scholar 

  113. Zhong B, Zhang J, Li B, Zhang B, Dai C, Sun X, Wang R, Su DS (2014) Phys Chem Chem Phys 16:4488

    CAS  Google Scholar 

  114. Yang Z, Nie H (2013) X-a. Chen, X. Chen, S. Huang. J Power Sour 236:238

    CAS  Google Scholar 

  115. Wong WY, Daud WRW, Mohamad AB, Kadhum AAH, Loh KS, Majlan EH (2013) Int J Hydrogen Energy 38:9370

    CAS  Google Scholar 

  116. Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) J Mat Chem A 2:4085

  117. Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao SZ (2012) Small 8:3550

    CAS  Google Scholar 

  118. Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622

    CAS  Google Scholar 

  119. Park KY, Jang JH, Hong JE, Kwon YU (2012) J Phys Chem C 116:16848

    CAS  Google Scholar 

  120. Li HB, Kang WJ, Wang L, Yue QL, Xu SL, Wang HS, Liu JF (2013) Carbon 54:249

    CAS  Google Scholar 

  121. Morozan A, Jegou P, Pinault M, Campidelli S, Jousselme A, Palacin S (2012) Chem Sus Chem 5:647

    CAS  Google Scholar 

  122. Geng DS, Chen Y, Chen YG, Li YL, Li RY, Sun XL, Ye SY, Knights S (2011) Energy Environ Sci 4:760

    CAS  Google Scholar 

  123. Zheng B, Wang J, Wang FB, Xia XH (2013) Electrochem Commun 28:24

    CAS  Google Scholar 

  124. Chokai M, Taniguchi M, Moriya S, Matsubayashi K, Shinoda T, Nabae Y, Kuroki S, Hayakawa T, Kakimoto M, Ozaki J, Miyata S (2010) J Power Sour 195:5947

    CAS  Google Scholar 

  125. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP (2006) B.N. Popov. J Phys Chem B 110:1787

    CAS  Google Scholar 

  126. Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki J (2008) J Phys Chem C 112:14706

    CAS  Google Scholar 

  127. Kim H, Lee K, Woo SI, Jung Y (2011) Phys Chem Chem Phys 13:17505

    CAS  Google Scholar 

  128. Zhou K, Li B, Zhang Q, Huang J-Q, Tian G-L, Jia J-C, Zhao M-Q, Luo G-H, Su DS, Wei F (2014) Chem Sus Chem 7:723

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siglinda Perathoner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Centi, G., Perathoner, S. & Su, D.S. Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes. Catal Surv Asia 18, 149–163 (2014). https://doi.org/10.1007/s10563-014-9172-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-014-9172-0

Keywords

Navigation