Skip to main content
Log in

Facile Synthesis of Highly Active Sulfated Titania Nanofibers for Viscous Acid-Catalytic Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Well-shaped sulfated titania nanofibers were prepared by impregnation of hydrogen titanate with (NH4)2S2O8 and calcination. Various characterization results showed that sulfated titania nanofibers consisted of smooth-surface and long-size fibers with the diameter of dozens of nanometers. Moreover, acid characteristics of sulfated titania nanofibers exhibited the high acid content, multi-strength acid sites and large Brønsted/Lewis acid ratio. In low-viscosity esterification, sulfated titania nanofibers had 1.2 ~ 2.1 times the reaction rate of other sulfated titania and other typical solid acids. Simultaneously, sulfated titania nanofibers possessed the higher DS value of product than those by other solid acids in highly viscous cellulose acetylation (2.41 versus 2.06 ~ 2.21). Besides these, sulfated titania nanofibers could show the excellent recycling performance in viscous acid-catalytic reactions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Ind Eng Chem Res 44:5353

    Article  CAS  Google Scholar 

  2. Min C, Seidel D (2017) Chem Soc Rev 46:5889

    Article  CAS  Google Scholar 

  3. Reddy BM, Patil MK (2009) Chem Rev 109:2185

    Article  CAS  Google Scholar 

  4. Gupta P, Paul S (2014) Catal Today 236:153

    Article  CAS  Google Scholar 

  5. Hino M, Arata K (1979) Chem Lett 8:477

    Article  Google Scholar 

  6. Arata K (2009) Green Chem 11:1719

    Article  CAS  Google Scholar 

  7. Peng B-X, Shu Q, Wang J-F, Wang G-R, Wang D-Z, Han M-H (2008) Process Saf Environ Prot 86:441

    Article  CAS  Google Scholar 

  8. Xiong Y, Zhang Z, Wang X, Liu B, Lin J (2014) Chem Eng J 235:349

    Article  CAS  Google Scholar 

  9. Zhang Q, Chang J, Wang T, Xu Y (2006) Energy Fuels 20:2717

    Article  CAS  Google Scholar 

  10. Hoff TC, Holmes MJ, Proano-Aviles J, Emdadi L, Liu D, Brown RC, Tessonnier J-P (2017) ACS Sustain Chem Eng 5:8766

    Article  CAS  Google Scholar 

  11. Liu F, Yi X, Chen W, Liu Z, Chen W, Qi C-Z, Song Y-F, Zheng A (2019) Chem Sci 10:5875

    Article  CAS  Google Scholar 

  12. Shi W (2013) Catal Lett 143:732

    Article  CAS  Google Scholar 

  13. Su F, Guo Y (2014) Green Chem 16:2934

    Article  CAS  Google Scholar 

  14. Huang Y-B, Fu Y (2013) Green Chem 15:1095

    Article  CAS  Google Scholar 

  15. Lin C-H, Chien S-H, Chao J-H, Sheu C-Y, Cheng Y-C, Huang Y-J, Tsai C-H (2002) Catal Lett 80:153

    Article  CAS  Google Scholar 

  16. Li L, Yue H, Ji T, Li W, Zhao X, Wang L, She J, Gu X, Li X (2019) Appl Catal A 574:25

    Article  CAS  Google Scholar 

  17. Liao Y, Huang X, Liao X, Shi B (2011) J Mol Catal A: Chem 347:46

    Article  CAS  Google Scholar 

  18. Yadav GD, Yadav AR (2014) Microporous Mesoporous Mater 195:180

    Article  CAS  Google Scholar 

  19. Ou Y, Tsen W-C, Jang S-C, Chuang F-S, Wang J, Liu H, Wen S, Gong C (2018) Electrochim Acta 264:251

    Article  CAS  Google Scholar 

  20. Hou Y, Zheng H, Ding Z, Wu L (2011) Powder Technol 214:451

    Article  CAS  Google Scholar 

  21. Ji T, Tu R, Li L, Mu L, Liu C, Lu X, Zhu J (2018) Appl Catal B 227:266

    Article  CAS  Google Scholar 

  22. Zhao H, Jiang P, Dong Y, Huang M, Liu B (2014) React Kinet Mech Catal 113:445

    Article  CAS  Google Scholar 

  23. Kramer SM, Gorichev IG, Lainer YA, Artamonova IV, Terekhova MV (2014) Russ Metall 2014:704

    Article  Google Scholar 

  24. Li J, Yang H, Li Q, Xu D (2012) CrystEngComm 14:3019

    Article  CAS  Google Scholar 

  25. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  26. Wang L, Yue H, Hua Z, Wang H, Li X, Li L (2017) Appl Catal B 219:301

    Article  CAS  Google Scholar 

  27. Morgado E, de Abreu MAS, Pravia ORC, Marinkovic BA, Jardim PM, Rizzo FC, Araújo AS (2006) Solid State Sci 8:888

    Article  CAS  Google Scholar 

  28. Poudel B, Wang WZ, Dames C, Huang JY, Kunwar S, Wang DZ, Banerjee D, Chen G, Ren ZF (2005) Nanotechnology 16:1935

    Article  CAS  Google Scholar 

  29. Kolen'ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Van Tendeloo G, Yoshimura M (2006) J Phys Chem B 110:4030

    Article  CAS  Google Scholar 

  30. Petkova V, Pelovski Y, Hristova V (2005) J Therm Anal Calorim 82:813

    Article  CAS  Google Scholar 

  31. Srinivasan R, Keogh RA, Milburn DR, Davis BH (1995) J Catal 153:123

    Article  CAS  Google Scholar 

  32. Liu F, Wang T, Zheng Y, Wang J (2017) J Catal 355:17

    Article  CAS  Google Scholar 

  33. Dosado AG, Chen W-T, Chan A, Sun-Waterhouse D, Waterhouse GIN (2015) J Catal 330:238

    Article  CAS  Google Scholar 

  34. Zhu G-N, Wang C-X, Xia Y-Y (2011) J Power Sources 196:2848

    Article  CAS  Google Scholar 

  35. Kuo H-L, Kuo C-Y, Liu C-H, Chao J-H, Lin C-H (2007) Catal Lett 113:7

    Article  CAS  Google Scholar 

  36. Ye Z, Chen H, Cui X, Zhou J, Shi J (2009) Mater Lett 63:2303

    Article  CAS  Google Scholar 

  37. López DE, Suwannakarn K, Bruce DA, Goodwin JG (2007) J Catal 247:43

    Article  Google Scholar 

  38. Sun X, Wang Q, Xu L, Liu S (2004) Catal Lett 94:75

    Article  CAS  Google Scholar 

  39. Kim S-Y, Lim T-H, Chang T-S, Shin C-H (2007) Catal Lett 117:112

    Article  CAS  Google Scholar 

  40. Madhusudan Reddy K, Gopal Reddy CV, Manorama SV (2001) J Solid State Chem 158:180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (21978134 and 21774059), Natural Science Foundation of Jiangsu Province (BK20191392), Program of China Scholarships Council (No. 201908320028) and Priority Academic Program Development of Jiangsu Higher Education Institutions. Moreover, an excellent research platform of the present work was provided by International Innovation Center for Forest Chemicals and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, J., Wu, Z., Zhou, K. et al. Facile Synthesis of Highly Active Sulfated Titania Nanofibers for Viscous Acid-Catalytic Reactions. Catal Lett 151, 1376–1384 (2021). https://doi.org/10.1007/s10562-020-03395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03395-6

Keywords

Navigation