Skip to main content

Advertisement

Log in

Production of Hydrogen by Steam Reforming of Ethanol over Pd-Promoted Ni/SiO2 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This study investigated the influence of palladium on the catalytic performance of Ni/SiO2 obtained by incipient wetness impregnation method. Ni/SiO2 and Pd–Ni/SiO2 catalysts were tested in the steam reforming of ethanol for hydrogen production. X-ray diffraction, X-ray fluorescence spectroscopy, N2 adsorption–desorption, temperature programmed reduction with hydrogen (H2-TPR) and X-ray photoelectron spectroscopy were used to characterize the catalysts in detail. The incorporation of small amount of palladium into Ni/SiO2 catalyst shifts the reduction of Ni species towards lower temperatures. All catalysts displayed total ethanol conversion and high H2 selectivity (~ 60%) above 500 °C. Compared to other Ni-based catalysts reported in the recent literature, the catalysts here investigated show promising potential for further application in the hydrogen production by ethanol steam reforming, but CO selectivity should be decreased for fuel cell applications.

Graphic Abstract

Production of hydrogen by steam reforming of ethanol over Pd-promoted Ni/SiO2 catalyst

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sehested J (2006) Four challenges for nickel steam-reforming catalysts. Catal Today 111:103–110. https://doi.org/10.1016/j.cattod.2005.10.002

    Article  CAS  Google Scholar 

  2. Breen JP, Burch R, Coleman HM (2002) Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Appl Catal B Environ 39:65–74. https://doi.org/10.1016/S0926-3373(02)00075-9

    Article  CAS  Google Scholar 

  3. Goula MA, Kontou SK, Tsiakaras PE (2004) Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst. Appl Catal B Environ 49:135–144. https://doi.org/10.1016/j.apcatb.2003.12.001

    Article  CAS  Google Scholar 

  4. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117:39–49. https://doi.org/10.1016/j.cej.2005.12.008

    Article  CAS  Google Scholar 

  5. Fatsikostas AN, Verykios XE (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225:439–452. https://doi.org/10.1016/j.jcat.2004.04.034

    Article  CAS  Google Scholar 

  6. Navarro RM, Sánchez-Sánchez MC, Alvarez-Galvan MC et al (2009) Hydrogen production from renewable sources: Biomass and photocatalytic opportunities. Energy Environ Sci 2:35–54. https://doi.org/10.1039/b808138g

    Article  CAS  Google Scholar 

  7. Mondal T, Pant KK, Dalai AK (2015) Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int J Hydrog Energy 40:2529–2544. https://doi.org/10.1016/j.ijhydene.2014.12.070

    Article  CAS  Google Scholar 

  8. Profeti LPR, Dias JAC, Assaf JM, Assaf EM (2009) Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals. J Power Sour 190:525–533. https://doi.org/10.1016/j.jpowsour.2008.12.104

    Article  CAS  Google Scholar 

  9. Zhurka MD, Lemonidou AA, Anderson JA, Kechagiopoulos PN (2018) Kinetic analysis of the steam reforming of ethanol over Ni/SiO2 for the elucidation of metal-dominated reaction pathways. React Chem Eng 3:883–897. https://doi.org/10.1039/c8re00145f

    Article  CAS  Google Scholar 

  10. Vicente J, Ereña J, Montero C et al (2014) Reaction pathway for ethanol steam reforming on a Ni/SiO2 catalyst including coke formation. Int J Hydrog Energy 39:18820–18834. https://doi.org/10.1016/j.ijhydene.2014.09.073

    Article  CAS  Google Scholar 

  11. Cavallaro S (2000) Ethanol steam reforming on Rh/Al2O3 Catalysts. Energy Fuels 14:1195–1199. https://doi.org/10.1021/ef0000779

    Article  CAS  Google Scholar 

  12. Bilal M, Jackson SD (2012) Steam reforming of ethanol at medium pressure over Ru/Al2O 3: effect of temperature and catalyst deactivation. Catal Sci Technol 2:2043–2051. https://doi.org/10.1039/c2cy20267k

    Article  CAS  Google Scholar 

  13. Carbajal-Ramos IA, Gomez MF, Condó AM et al (2016) Catalytic behavior of Ru supported on Ce0.8Zr0.2O2 for hydrogen production. Appl Catal B Environ 181:58–70. https://doi.org/10.1016/j.apcatb.2015.07.025

    Article  CAS  Google Scholar 

  14. Moraes TS, Rabelo Neto RC, Ribeiro MC et al (2016) Ethanol conversion at low temperature over CeO2-supported Ni-based catalysts. Effect of Pt addition to Ni catalyst. Appl Catal B Environ 181:754–768. https://doi.org/10.1016/j.apcatb.2015.08.044

    Article  CAS  Google Scholar 

  15. Campos CH, Pecchi G, Fierro JLG, Osorio-Vargas P (2019) Enhanced bimetallic Rh-Ni supported catalysts on alumina doped with mixed lanthanum-cerium oxides for ethanol steam reforming. Mol Catal 469:87–97. https://doi.org/10.1016/j.mcat.2019.03.007

    Article  CAS  Google Scholar 

  16. Szijjártó GP, Pászti Z, Sajó I et al (2013) Nature of the active sites in Ni/MgAl2O4-based catalysts designed for steam reforming of ethanol. J Catal 305:290–306. https://doi.org/10.1016/j.jcat.2013.05.036

    Article  CAS  Google Scholar 

  17. Marinho ALA, Rabelo-Neto RC, Noronha FB, Mattos LV (2016) Steam reforming of ethanol over Ni-based catalysts obtained from LaNiO3 and LaNiO3/CeSiO2 perovskite-type oxides for the production of hydrogen. Appl Catal A Gen 520:53–64. https://doi.org/10.1016/j.apcata.2016.03.032

    Article  CAS  Google Scholar 

  18. Kubacka A, Fernández-García M, Martínez-Arias A (2016) Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Appl Catal A Gen 518:2–17. https://doi.org/10.1016/j.apcata.2016.01.027

    Article  CAS  Google Scholar 

  19. Song H, Ozkan US (2009) Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J Catal 261:66–74. https://doi.org/10.1016/j.jcat.2008.11.006

    Article  CAS  Google Scholar 

  20. Sohn H, Ozkan US (2016) Cobalt-based catalysts for ethanol steam reforming: an overview. Energy Fuels 30:5309–5322. https://doi.org/10.1021/acs.energyfuels.6b00577

    Article  CAS  Google Scholar 

  21. Zhou G, Barrio L, Agnoli S et al (2010) High activity of Ce1-xNixO2-y for H2 production through ethanol steam reforming: Tuning catalytic performance through metal-oxide interactions. Angew Chemie Int Ed 49:9680–9684. https://doi.org/10.1002/anie.201004966

    Article  CAS  Google Scholar 

  22. Pu J, Nishikado K, Wang N et al (2018) Core-shell nickel catalysts for the steam reforming of acetic acid. Appl Catal B Environ 224:69–79. https://doi.org/10.1016/j.apcatb.2017.09.058

    Article  CAS  Google Scholar 

  23. Chen LC, Lin SD (2011) The ethanol steam reforming over Cu-Ni/SiO2 catalysts: Effect of Cu/Ni ratio. Appl Catal B Environ 106:639–649. https://doi.org/10.1016/j.apcatb.2011.06.028

    Article  CAS  Google Scholar 

  24. Kugai J, Subramani V, Song C et al (2006) Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol. J Catal 238:430–440. https://doi.org/10.1016/j.jcat.2006.01.001

    Article  CAS  Google Scholar 

  25. Parizotto NV, Rocha KO, Damyanova S et al (2007) Alumina-supported Ni catalysts modified with silver for the steam reforming of methane: effect of Ag on the control of coke formation. Appl Catal A Gen 330:12–22. https://doi.org/10.1016/j.apcata.2007.06.022

    Article  CAS  Google Scholar 

  26. Vizcaíno AJ, Carrero A, Calles JA (2007) Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. Int J Hydrog Energy 32:1450–1461. https://doi.org/10.1016/j.ijhydene.2006.10.024

    Article  CAS  Google Scholar 

  27. Palma V, Ruocco C, Meloni E, Ricca A (2017) Influence of catalytic formulation and operative conditions on coke deposition over CeO2-SiO2 based catalysts for ethanol reforming. Energies 10:1030. https://doi.org/10.3390/en10071030

    Article  CAS  Google Scholar 

  28. Pereira EB, Homs N, Martí S et al (2008) Oxidative steam-reforming of ethanol over Co/SiO2, Co-Rh/SiO2 and Co-Ru/SiO2 catalysts: catalytic behavior and deactivation/regeneration processes. J Catal 257:206–214. https://doi.org/10.1016/j.jcat.2008.05.001

    Article  CAS  Google Scholar 

  29. Ai F, Yao A, Huang W et al (2010) Synthesis of PVP-protected NiPd nanoalloys by modified polyol process and their magnetic properties. Phys E Low-Dimensional Syst Nanostruct 42:1281–1286. https://doi.org/10.1016/j.physe.2009.10.050

    Article  CAS  Google Scholar 

  30. Lu P, Teranishi T, Asakura K et al (1999) Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene. J Phys Chem B 103:9673–9682. https://doi.org/10.1021/jp992177p

    Article  CAS  Google Scholar 

  31. Lertwittayanon K, Atong D, Aungkavattana P et al (2010) Effect of CaO-ZrO2 addition to Ni supported on γ-Al2O3 by sequential impregnation in steam methane reforming. Int J Hydrog Energy 35:12277–12285. https://doi.org/10.1016/j.ijhydene.2010.08.098

    Article  CAS  Google Scholar 

  32. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219. https://doi.org/10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  33. Wang Y, Zhu A, Zhang Y et al (2008) Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction. Appl Catal B Environ 81:141–149. https://doi.org/10.1016/j.apcatb.2007.12.005

    Article  CAS  Google Scholar 

  34. Luisetto I, Tuti S, Di Bartolomeo E (2012) Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int J Hydrog Energy 37:15992–15999. https://doi.org/10.1016/j.ijhydene.2012.08.006

    Article  CAS  Google Scholar 

  35. Lucrédio AF, Assaf JM, Assaf EM (2011) Methane conversion reactions on Ni catalysts promoted with Rh: influence of support. Appl Catal A Gen 400:156–165. https://doi.org/10.1016/j.apcata.2011.04.035

    Article  CAS  Google Scholar 

  36. Wu Chunfei C, Wang Leizhi L, Williams PT et al (2011) Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: influence of Ni content. Appl Catal B Environ 108–109:6–13. https://doi.org/10.1016/j.apcatb.2011.07.023

    Article  CAS  Google Scholar 

  37. Liu H, Wang H, Shen J et al (2008) Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Appl Catal A Gen 337:138–147. https://doi.org/10.1016/j.apcata.2007.12.006

    Article  CAS  Google Scholar 

  38. Ren S, Zhang P, Shui H et al (2010) Promotion of Ni/SBA-15 catalyst for hydrogenation of naphthalene by pretreatment with ammonia/water vapour. Catal Commun 12:132–136. https://doi.org/10.1016/j.catcom.2010.08.022

    Article  CAS  Google Scholar 

  39. Qiu S, Zhang X, Liu Q et al (2013) A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation. Catal Commun 42:73–78. https://doi.org/10.1016/j.catcom.2013.07.031

    Article  CAS  Google Scholar 

  40. Ding C, Wang J, Ai G et al (2016) Partial oxidation of methane over silica supported Ni nanoparticles with size control by alkanol solvent. Fuel 175:1–12. https://doi.org/10.1016/j.fuel.2016.02.024

    Article  CAS  Google Scholar 

  41. Wang SY, Li N, Zhou RM et al (2013) Comparing the CO oxidation activity of free PdO and Pd2+ ions over PdO-CeO2/SiO2 catalysts. J Mol Catal A Chem 374–375:53–58. https://doi.org/10.1016/j.molcata.2013.03.019

    Article  CAS  Google Scholar 

  42. Ma Z, Meng X, Liu N, Shi L (2018) Pd-Ni doped sulfated zirconia: study of hydrogen spillover and isomerization of N-hexane. Mol Catal 449:114–121. https://doi.org/10.1016/j.mcat.2018.02.003

    Article  CAS  Google Scholar 

  43. Montes De Correa C, Córdoba Castrillón F (2005) Supported bimetallic Pd-Co catalysts: characterization and catalytic activity. J Mol Catal A Chem 228:267–273. https://doi.org/10.1016/j.molcata.2004.09.033

    Article  CAS  Google Scholar 

  44. Kumar N, Smith ML, Spivey JJ (2012) Characterization and testing of silica-supported cobalt-palladium catalysts for conversion of syngas to oxygenates. J Catal 289:218–226. https://doi.org/10.1016/j.jcat.2012.02.011

    Article  CAS  Google Scholar 

  45. Stonkus V, Edolfa K, Leite L et al (2009) Palladium-promoted Co-SiO2 catalysts for 1,4-butanediol cyclization. Appl Catal A Gen 362:147–154. https://doi.org/10.1016/j.apcata.2009.04.033

    Article  CAS  Google Scholar 

  46. Jacobs G, Das TK, Patterson PM et al (2003) Fischer-Tropsch synthesis XAFS–XAFS studies of the effect of water on a Pt-promoted Co/Al2O3 catalyst. Appl Catal A Gen 247:335–343. https://doi.org/10.1016/S0926-860X(03)00107-8

    Article  CAS  Google Scholar 

  47. Das TK, Jacobs G, Patterson PM et al (2003) Fischer-Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel 82:805–815. https://doi.org/10.1016/S0016-2361(02)00361-7

    Article  CAS  Google Scholar 

  48. Peck MA, Langell MA (2012) Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater 24:4483–4490. https://doi.org/10.1021/cm300739y

    Article  CAS  Google Scholar 

  49. Larina TV, Dovlitova LS, Kaichev VV et al (2015) Influence of the surface layer of hydrated silicon on the stabilization of Co2+ cations in Zr-Si fiberglass materials according to XPS, UV-Vis DRS, and differential dissolution phase analysis. RSC Adv 5:79898–79905. https://doi.org/10.1039/c5ra12551k

    Article  CAS  Google Scholar 

  50. Guo Z, Kang X, Zheng X et al (2019) PdCu alloy nanoparticles supported on CeO2 nanorods: Enhanced electrocatalytic activity by synergy of compressive strain, PdO and oxygen vacancy. J Catal 374:101–109. https://doi.org/10.1016/j.jcat.2019.04.027

    Article  CAS  Google Scholar 

  51. Post P, Wurlitzer L, Maus-Friedrichs W, Weber AP (2018) Characterization and applications of nanoparticles modified in-flight with silica or silica-organic coatings. Nanomaterials 8:1–19. https://doi.org/10.3390/nano8070530

    Article  CAS  Google Scholar 

  52. Gostynski R, Fraser R, Landman M et al (2017) Synthesis and XPS characterization of Si-supported chromium(0) Fischer aminocarbene complexes. J Organomet Chem 836–837:62–67. https://doi.org/10.1016/j.jorganchem.2017.03.001

    Article  CAS  Google Scholar 

  53. Abass MA, Syed AA, Gervais C, Singh G (2017) Synthesis and electrochemical performance of a polymer-derived silicon oxycarbide/boron nitride nanotube composite. RSC Adv 7:21576–21584. https://doi.org/10.1039/c7ra01545c

    Article  CAS  Google Scholar 

  54. Zheng LL, Ma Q, Wang YH et al (2016) High-performance unannealed a-InGaZnO TFT with an atomic-layer-deposited SiO2 insulator. IEEE Electron Device Lett 37:743–746. https://doi.org/10.1109/LED.2016.2558665

    Article  CAS  Google Scholar 

  55. Li L, Tang D, Song Y et al (2018) Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts. Energy 149:937–943. https://doi.org/10.1016/j.energy.2018.02.116

    Article  CAS  Google Scholar 

  56. Wang F, Zhang L, Zhu J et al (2018) Study on different CeO2 structure stability during ethanol steam reforming reaction over Ir/CeO2 nanocatalysts. Appl Catal A Gen 564:226–233. https://doi.org/10.1016/j.apcata.2018.07.036

    Article  CAS  Google Scholar 

  57. Montero C, Oar-Arteta L, Remiro A et al (2015) Thermodynamic comparison between bio-oil and ethanol steam reforming. Int J Hydrog Energy 40:15963–15971. https://doi.org/10.1016/j.ijhydene.2015.09.125

    Article  CAS  Google Scholar 

  58. da Silva AAA, Bion N, Epron F et al (2017) Effect of the type of ceria dopant on the performance of Ni/CeO2 SOFC anode for ethanol internal reforming. Appl Catal B Environ 206:626–641. https://doi.org/10.1016/j.apcatb.2017.01.069

    Article  CAS  Google Scholar 

  59. Augusto BL, Noronha FB, Fonseca FC et al (2014) Nickel/gadolinium-doped ceria anode for direct ethanol solid oxide fuel cell. Int J Hydrog Energy 39:11196–11209. https://doi.org/10.1016/j.ijhydene.2014.05.088

    Article  CAS  Google Scholar 

  60. Nobrega SD, Gelin P, Georges S et al (2014) A fuel-flexible solid oxide fuel cell operating in gradual internal reforming. J Electrochem Soc 161:F354–F359. https://doi.org/10.1149/2.107403jes

    Article  CAS  Google Scholar 

  61. Rodrigues TS, de Moura ABL, e Silva FA et al (2019) Ni supported Ce0.9Sm0.1O2-Δ nanowires: an efficient catalyst for ethanol steam reforming for hydrogen production. Fuel 237:1244–1253. https://doi.org/10.1016/j.fuel.2018.10.053

    Article  CAS  Google Scholar 

  62. Wang F, Zhang L, Deng J et al (2019) Embedded Ni catalysts in Ni-O-Ce solid solution for stable hydrogen production from ethanol steam reforming reaction. Fuel Process Technol 193:94–101. https://doi.org/10.1016/j.fuproc.2019.05.004

    Article  CAS  Google Scholar 

  63. Santander JA, Tonetto GM, Pedernera MN, López E (2017) Ni/CeO2–MgO catalysts supported on stainless steel plates for ethanol steam reforming. Int J Hydrog Energy 42:9482–9492. https://doi.org/10.1016/j.ijhydene.2017.03.169

    Article  CAS  Google Scholar 

  64. Campos CH, Osorio-Vargas P, Flores-González N et al (2016) Effect of Ni loading on lanthanide (La and Ce) promoted γ-Al2O3 catalysts applied to ethanol steam reforming. Catal Lett 146:433–441. https://doi.org/10.1007/s10562-015-1649-6

    Article  CAS  Google Scholar 

  65. Palma V, Ruocco C, Castaldo F et al (2015) Ethanol steam reforming over bimetallic coated ceramic foams: effect of reactor configuration and catalytic support. Int J Hydrog Energy 40:12650–12662. https://doi.org/10.1016/j.ijhydene.2015.07.138

    Article  CAS  Google Scholar 

  66. Liu F, Qu Y, Yue Y et al (2015) Nano bimetallic alloy of Ni-Co obtained from LaCoxNi1-xO3 and its catalytic performance for steam reforming of ethanol. RSC Adv 5:16837–16846. https://doi.org/10.1039/c4ra14131h

    Article  CAS  Google Scholar 

  67. Ye JL, Wang YQ, Liu Y, Wang H (2008) Steam reforming of ethanol over Ni/CexTi1-xO2 catalysts. Int J Hydrog Energy 33:6602–6611. https://doi.org/10.1016/j.ijhydene.2008.08.036

    Article  CAS  Google Scholar 

  68. Zhang C, Hu X, Yu Z et al (2019) Steam reforming of acetic acid for hydrogen production over attapulgite and alumina supported Ni catalysts: Impacts of properties of supports on catalytic behaviors. Int J Hydrog Energy 44:5230–5244. https://doi.org/10.1016/j.ijhydene.2018.09.071

    Article  CAS  Google Scholar 

  69. Sharma YC, Kumar A, Prasad R, Upadhyay SN (2017) Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew Sustain Energy Rev 74:89–103. https://doi.org/10.1016/j.rser.2017.02.049

    Article  CAS  Google Scholar 

  70. Ogo S, Sekine Y (2020) Recent progress in ethanol steam reforming using non-noble transition metal catalysts: a review. Fuel Process Technol 199:106238. https://doi.org/10.1016/j.fuproc.2019.106238

    Article  CAS  Google Scholar 

  71. Cheng F, Dupont V (2017) Steam reforming of bio-compounds with auto-reduced nickel catalyst. Catalysts 7:114. https://doi.org/10.3390/catal7040114

    Article  CAS  Google Scholar 

  72. Song JH, Yoo S, Yoo J et al (2017) Hydrogen production by steam reforming of ethanol over Ni/Al2O3-La2O3 xerogel catalysts. Mol Catal 434:123–133. https://doi.org/10.1016/j.mcat.2017.03.009

    Article  CAS  Google Scholar 

  73. Bussi J, Musso M, Quevedo A et al (2017) Structural and catalytic stability assessment of Ni-La-Sn ternary mixed oxides for hydrogen production by steam reforming of ethanol. Catal Today 296:154–162. https://doi.org/10.1016/j.cattod.2017.04.024

    Article  CAS  Google Scholar 

  74. Shao J, Zeng G, Li Y (2017) Effect of Zn substitution to a LaNiO3−Δperovskite structured catalyst in ethanol steam reforming. Int J Hydrog Energy 42:17362–17375. https://doi.org/10.1016/j.ijhydene.2017.04.066

    Article  CAS  Google Scholar 

  75. Olivares ACV, Gomez MF, Barroso MN, Abello MC (2018) Ni-supported catalysts for ethanol steam reforming: effect of the solvent and metallic precursor in catalyst preparation. Int J Ind Chem 9:61–73. https://doi.org/10.1007/s40090-018-0135-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank CNPq (Conselho Nacional de Desenvolvimento Científico) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for financial support; RECAT/UFF (Laboratório de Cinética, Catálise e Reatores Químicos da Universidade Federal Fluminense) for XPS analysis; and Jeiveison G.S.S. Maia for the thermodynamics calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Souza Toniolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chagas, C.A., Manfro, R.L. & Toniolo, F.S. Production of Hydrogen by Steam Reforming of Ethanol over Pd-Promoted Ni/SiO2 Catalyst. Catal Lett 150, 3424–3436 (2020). https://doi.org/10.1007/s10562-020-03257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03257-1

Keywords

Navigation