Skip to main content
Log in

Palladium Nanoparticles Anchored on Thiol Functionalized Xylose Hydrochar Microspheres: An Efficient Heterogeneous Catalyst for Suzuki Cross-Coupling Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Novel thiol functionalized xylose hydrochar microspheres supported palladium nanoparticles (C–SH–Pd) were synthesized by gentle heating of palladium (II) acetate and thiol functionalized xylose hydrochar (C–SH) in ethanol. The as-prepared C–SH–Pd exhibited high catalytic activity towards Suzuki reactions with a yield of high up to 100%. Moreover, it could be reused for at least five times without heavily loss of the catalytic activity. The amount of palladium entrapped on C-SH microspheres was measured by AAS and found to be 1.42 mmol/g. Leaching studies showed that the filtrate contained less than 0.2 ppm Pd. Due to the superior catalytic performance and stability of the C–SH–Pd catalyst, it can be exploited in other cross coupling reactions in the long run.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed Engl 51:5062–5085

    CAS  PubMed  Google Scholar 

  2. Norio M, Akira S (1995) Chem Rev 95:2457–2483

    Google Scholar 

  3. Kunfi A, May Z, Németh P, London G (2018) J Catal 361:84–93

    CAS  Google Scholar 

  4. Xiao Q, Sarina S, Jaatinen E, Jia JF, Arnold DP, Liu HW, Zhu HY (2014) Green Chem 16:4272–4285

    CAS  Google Scholar 

  5. Puthiaraj P, Pitchumani K (2014) Green Chem 16:4223–4233

    CAS  Google Scholar 

  6. Yavuz K, Küçükbay H (2018) Appl Organomet Chem 32:e3897

    Google Scholar 

  7. Dong WH, Zhang L, Wang CH, Feng C, Shang NZ, Gao ST, Wang C (2016) RSC Adv 6:37118–37123

    CAS  Google Scholar 

  8. Rathi AK, Gawande MB, Pechousek J, Tucek J, Aparicio C, Petr M, Tomanec O, Krikavova R, Travnicek Z, Varma RS, Zboril R (2016) Green Chem 18:2363–2373

    CAS  Google Scholar 

  9. Veisi H, Manesh AA, Eivazi N, Faraji AR (2015) RSC Adv 5:20098–20107

    CAS  Google Scholar 

  10. Camp JE, Dunsford JJ, Dacosta OSG, Blundell RK, Adams J, Britton J, Smith RJ, Bousfield TW, Fay MW (2016) RSC Adv 6:16115–16121

    CAS  Google Scholar 

  11. Lichtenegger GJ, Maier M, Hackl M, Khinast JG, Gössler W, Griesser T, Phani Kumar VS, Gruber-Woelfler H, Deshpande PA (2017) J Mol Catal A 426:39–51

    CAS  Google Scholar 

  12. Gholinejad M, Najera C, Hamed F, Seyedhamzeh M, Bahrami M, Kompany-Zareh M (2017) Tetrahedron 73:5585–5592

    CAS  Google Scholar 

  13. Veisi H, Gholami J, Ueda H, Mohammadi P, Noroozi M (2015) J Mol Catal A 396:216–223

    CAS  Google Scholar 

  14. Gholinejad M, Zareh F, Nájera C (2018) Appl Organomet Chem 32:e3984

    Google Scholar 

  15. Huo JJ, Johnson RL, Duan P, Pham HN, Mendivelso-Perez D, Smith EA, Datye AK, Schmidt-Rohr K, Shanks BH (2018) Catal Sci Technol 8:1151–1160

    CAS  Google Scholar 

  16. Diyarbakir S, Can H, Metin O (2015) ACS Appl Mater Interfaces 7:3199–3206

    CAS  PubMed  Google Scholar 

  17. Elazab HA, Siamaki AR, Moussa S, Gupton BF, El-Shall MS (2015) Appl Catal A 491:58–69

    CAS  Google Scholar 

  18. Jadhav S, Kumbhar A, Salunkhe R (2015) Appl Organomet Chem 29:339–345

    CAS  Google Scholar 

  19. Mori K, Masuda S, Tanaka H, Yoshizawa K, Che M, Yamashita H (2017) Chem Commun 53:4677–4680

    CAS  Google Scholar 

  20. Ayodele OB, Farouk HU, Mohammed J, Uemura Y, Daud WMAW (2015) J Mol Catal A 400:179–186

    CAS  Google Scholar 

  21. Fu WQ, Zhang L, Tang TD, Ke QP, Wang S, Hu JB, Fang GY, Li JX, Xiao FS (2011) J Am Chem Soc 133:15346–15349

    CAS  PubMed  Google Scholar 

  22. Le XD, Dong ZP, Liu YS, Jin ZC, Huy TD, Le MD, Ma JT (2014) J Mater Chem A 2:19696–19706

    CAS  Google Scholar 

  23. Baran T, Menteş A (2016) J Mol Struct 1122:111–116

    CAS  Google Scholar 

  24. Kang SM, Li XL, Fan J, Chang J (2012) Ind Eng Chem Res 51:9023–9031

    CAS  Google Scholar 

  25. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Nat Commun 1:56

    PubMed  Google Scholar 

  26. Hitzl M, Mendez A, Owsianiak M, Renz M (2018) J Environ Chem Eng 6:7029–7034

    CAS  Google Scholar 

  27. James WL, Michelle K, Barbara RE, Sokwon P, Buchanan AC III, Charles TG, Robert CB (2010) Environ Sci Technol 44:7970–7974

    Google Scholar 

  28. Dumroese RK, Heiskanen J, Englund K, Tervahauta A (2011) Biomass Bioenergy 35:2018–2027

    CAS  Google Scholar 

  29. Wang LL, Wang XF, Zou B, Ma XY, Qu YN, Rong CG, Li Y, Su Y, Wang ZC (2011) Bioresour Technol 102:8220–8224

    CAS  PubMed  Google Scholar 

  30. Liu ZG, Zhang FS (2011) Desalination 267:101–106

    CAS  Google Scholar 

  31. Zhu XD, Liu YC, Qian F, Zhou C, Zhang SC, Chen JM (2014) Bioresour Technol 154:209–214

    CAS  PubMed  Google Scholar 

  32. Genovese M, Lian K (2017) J Mater Chem A 5:3939–3947

    CAS  Google Scholar 

  33. Liu WJ, Jiang H, Yu HQ (2015) Chem Rev 115:12251–12285

    CAS  PubMed  Google Scholar 

  34. Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hu XJ, Wang X, Liu SH, Jiang LH (2017) Bioresour Technol 227:359–372

    CAS  PubMed  Google Scholar 

  35. Wang XX, Hu PB, Xue FJ, Wei YP (2014) Carbohydr Polym 114:476–483

    CAS  PubMed  Google Scholar 

  36. Baran NY, Baran T, Mentes A (2018) Carbohydr Polym 181:596–604

    PubMed  Google Scholar 

  37. Frindy S, Primo A, Lahcini M, Bousmina M, Garcia H, Kadib AE (2015) Green Chem 17:1893–1898

    CAS  Google Scholar 

  38. Hajipour AR, Sadeghi AR, Khorsandi Z (2018) Appl Organomet Chem 32:e4112

    Google Scholar 

  39. Kardanpour R, Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Khosropour AR, Zadehahmadi F (2014) J Organomet Chem 761:127–133

    CAS  Google Scholar 

  40. Sevilla M, Fuertes AB (2009) Chemistry 15:4195–4203

    CAS  PubMed  Google Scholar 

  41. Oliveira RL, He W, Gebbink RJMK, de Jong KP (2015) Catal Sci Technol 5:1919–1928

    CAS  Google Scholar 

  42. Sabounchei SJ, Ahmadi M, Nasri Z, Shams E, Panahimehr M (2013) Tetrahedron Lett 54:4656–4660

    CAS  Google Scholar 

  43. Crudden CM, Sateesh M, Lewis R (2005) J Am Chem Soc 127:10045–10050

    CAS  PubMed  Google Scholar 

  44. Sobhi HR, Ghambarian M, Esrafili A, Behbahani M (2017) Microchim Acta 184:2317–2323

    CAS  Google Scholar 

  45. Yılmaz Ş, Şahan T, Karabakan A (2017) Korean J Chem Eng 34:2225–2235

    Google Scholar 

  46. Chen W, Zhong LX, Peng XW, Wang K, Chen ZF, Sun RC (2014) Catal Sci Technol 4:1426–1435

    CAS  Google Scholar 

  47. Evangelisti C, Panziera N, Pertici P, Vitulli G, Salvadori P, Battocchio C, Polzonetti G (2009) J Catal 262:287–293

    CAS  Google Scholar 

  48. Xie ZL, White RJ, Weber J, Taubert A, Titirici MM (2011) J Mater Chem 21:7434–7442

    CAS  Google Scholar 

  49. Chen W, Zhong LX, Peng XW, Lin JH, Sun RC (2014) Cellulose 21:125–137

    Google Scholar 

Download references

Acknowledgements

We wish to thank for the National Natural Science Foundation of China (3197161, 31430092, 21736003), Guangdong Natural Science Funds for Distinguished Young Scholar (2016A030306027, 2017A030306029), Guangdong Natural Science Funds (2017A030313130), Guangzhou science and technology funds (201904010078), State Key Laboratory of Pulp and Paper Engineering and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwen Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Zeng, X., Du, F. et al. Palladium Nanoparticles Anchored on Thiol Functionalized Xylose Hydrochar Microspheres: An Efficient Heterogeneous Catalyst for Suzuki Cross-Coupling Reactions. Catal Lett 150, 1011–1019 (2020). https://doi.org/10.1007/s10562-019-02984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02984-4

Keywords

Navigation