Skip to main content
Log in

Effect of Glycine Addition on Physicochemical and Catalytic Properties of Mn, Mn–La and Mn–Ce Monolithic Catalysts Prepared by Solution Combustion Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalysts containing Mn, Mn–La and Mn–Ce oxides supported on ceramic honeycomb monoliths were prepared by excess-wet impregnation and solution combustion synthesis (SCS). In SCS, glycine was used as a fuel additive with variable concentration (fuel lean and fuel rich conditions). The catalysts were studied by BET, XRD, HRTEM, H2-TPR, and differential dissolution. Properties of the catalysts in the deep oxidation of butane were investigated. The best activity and stability were observed for the catalysts prepared by SCS under fuel rich conditions. Under these conditions, the active component is formed as highly dispersed particles of manganese oxides in the composition of simple and mixed oxides that are located in subsurface layers of the support. On the contrary, manganese oxides that are formed upon thermal treatment of the impregnation catalyst are located mostly in the bulk of the support. Reducing conditions of the SCS reaction lead to the formation of simple and mixed oxides where manganese is mostly in Mn3+ and Mn2+ oxidation states. The presence of reduced manganese species in the subsurface layers of support, which are accessible to reactants, provides high efficiency of SCS catalysts in the oxidation of butane.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moulijn JA, Kreutzer MT, Nijhuis TA, Kapteijn F (2011) Adv Catal 54:249–327

    CAS  Google Scholar 

  2. Keav S, Matam SK, Ferri D, Weidenkaff A (2014) Catalysts 4:226–255

    Article  CAS  Google Scholar 

  3. Forzatti P, Ballardini D, Sighicelli L (1998) Catal Today 41:87–94

    Article  CAS  Google Scholar 

  4. Pratt AS, Cairns JA (1977) Platin Metals Rev 21:74–83

    CAS  Google Scholar 

  5. Ismagilov ZR, Shkrabina RA, Arendarskii DA, Shikina NV (1998) Kinet Catal 39:600–602

    CAS  Google Scholar 

  6. Perez-Cadenas AF, Kapteijn F, Moulijn JA, Maldonado-Hodar FJ, Carrasco-Marın F, Moreno-Castilla C (2006) Carbon 44:2463–2468. https://doi.org/10.1016/j.carbon.2006.05.006

    Article  CAS  Google Scholar 

  7. Yashnik SA, Denisov SP, Danchenko NM, Ismagilov ZR (2016) Appl Catal B 185:322–336. https://doi.org/10.1016/j.apcatb.2015.12.017

    Article  CAS  Google Scholar 

  8. Yashnik SA, Ismagilov ZR, Porsin AV, Denisov SP, Danchenko NM (2007) Top Catal 42–43:465–469. https://doi.org/10.1007/s11244-007-0226-7

    Article  CAS  Google Scholar 

  9. Euzen P, Le Gal J-H, Rebours B, Martin G (1999) Catal Today 47:19–27

    Article  CAS  Google Scholar 

  10. Augustin M, Fenske D, Bardenhagen I, Westphal A, Knipper M, Plaggenborg T, Kolny-Olesiak J, Parisi J (2015) Bailstein. J Nanotechnol 6:47–59

    CAS  Google Scholar 

  11. Wu Z, Tang N, Xiao L, Liu Y, Wang H (2010) J Colloid Interface Sci 352:143–148. https://doi.org/10.1016/j.jcis.2010.08.031

    Article  CAS  PubMed  Google Scholar 

  12. Pozan GS (2012) J Hazard Mater 221–222:124–130. https://doi.org/10.1016/j.jhazmat.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  13. Xu H, Yan N, Qu Z, Liu W, Mei J, Huang W, Zhao S (2017) Environ Sci Technol 51:8879–8892

    Article  CAS  PubMed  Google Scholar 

  14. Kim SC, Shim WG (2010) Appl Catal B 98:180–185. https://doi.org/10.1016/j.apcatb.2010.05.027

    Article  CAS  Google Scholar 

  15. Atribak I, Bueno-Loopez A, Garcia-Garcia A, Navarro P, Frias D, Montes M (2010) Appl Catal B 93(3–4):267–273

    Article  CAS  Google Scholar 

  16. Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han YF (2008) Catal Today 131:477–482. https://doi.org/10.1016/j.cattod.2007.10.061

    Article  CAS  Google Scholar 

  17. Wang X, Liu Y, Zhang Y, Zhang T, Chang H, Zhang Y, Jiang L (2018) Appl Catal B 229:52–62

    Article  CAS  Google Scholar 

  18. Xie Y, Yu Y, Gong X, Guo Y, Guo Y, Wang Y, Lu G (2015) Cryst Eng Commun 17:3005–3014. https://doi.org/10.1039/c5ce00058k

    Article  CAS  Google Scholar 

  19. Chang Y, McCarty JG (1996) Catal Today 30:163–170

    Article  CAS  Google Scholar 

  20. Tsyrulnikov PG, Salnikov VS, Drozdov VA, Stuken SA, Bubnov AV, Grigorov EI, Kalinkin AV, Zaikovskii VI (1991) Kinet Catal 32:387–394

    Google Scholar 

  21. Tsyrulnikov PG, Tsybulya SV, Kryukova GN, Boronin AI, Koscheev SV, Starostina TG, Bubnov AV, Kudrya EN (2002) J Mol Catal A 179:213–220

    Article  CAS  Google Scholar 

  22. Popova NM, Dosumov KD, Zheksenbaeva ZT, Komashko LV (2006) Grigor’eva VP, Sass AS, Salakhova RKh. Kinet Catal 47:907–916

    Article  CAS  Google Scholar 

  23. Sui Z-J, Vradman L, Reizner I, Landau ML, Herskowitz M (2011) Catal Comm 12:1437–1441. https://doi.org/10.1016/j.catcom.2011.06.001

    Article  CAS  Google Scholar 

  24. Zhu Y, Sun Y, Niu X, Yuan F, Fu H (2010) Catal Lett 135:152–158. https://doi.org/10.1007/s10562-009-0034-8

    Article  CAS  Google Scholar 

  25. Picasso G, Gutiérrez M, Pina MP, Herguido J (2007) Chem Eng J 126:119–130. https://doi.org/10.1016/j.cej.2006.09.005

    Article  CAS  Google Scholar 

  26. Colman-Lerner E, Peluso MA, Sambeth J, Thomas H (2016) J Rare Earths 34:675–682. https://doi.org/10.1016/S1002-0721(16)60078-9

    Article  CAS  Google Scholar 

  27. Cuo Zh, Deng Y, Li W, Peng Sh, Zhao F, Liu H (2018) Appl Surf Sci 456:594–601. https://doi.org/10.1016/j.apsusc.2018.06.207

    Article  CAS  Google Scholar 

  28. Yi H, Huang Y, Tang X, Zhao Sh, Gao F, Xie X, Wang J, Yang Zh (2018) Ceram Int 44:15472–15477. https://doi.org/10.1016/j.ceramint.2018.05.203

    Article  CAS  Google Scholar 

  29. Zagaynov IV, Naumkin AV, Grigoriev YV (2018) Appl Catal B 236:171–175. https://doi.org/10.1016/j.apcatb.2018.05.027

    Article  CAS  Google Scholar 

  30. Ciambellia P, Palma V, Tikhov SF, Sadykov VA, Isupova LA, Lisic L (1999) Catal Today 47:199–207

    Article  Google Scholar 

  31. Anil C, Madras G (2016) J Mol Catal A 424:106–114. https://doi.org/10.1016/j.molcata.2016.08.024

    Article  CAS  Google Scholar 

  32. Li D, Shen G, Tang W, Liu H, Chen Y (2014) Particuology 14:71–75. https://doi.org/10.1016/j.partic.2013.06.010

    Article  CAS  Google Scholar 

  33. Zeng JL, Liu XL, Wan J, Lv HL, Zhu TY (2015) J Mol Catal A 408:221–227. https://doi.org/10.1016/j.molcata.2015.07.024

    Article  CAS  Google Scholar 

  34. Yodsa-nga A, Millanar JM, Neramittagapong A, Khemthong P, Wantala K (2015) Surf Coat Technol 271:217–224. https://doi.org/10.1016/j.surfcoat.2014.12.025

    Article  CAS  Google Scholar 

  35. Ke Y, Lai S-Y (2014) Microporous Mesoporous Mater 198:256–262. https://doi.org/10.1016/j.micromeso.2014.07.054

    Article  CAS  Google Scholar 

  36. Venkataswamy P, Jampaiah D, Lin F, Alxneit I, Reddy BM (2015) Appl Surf Sci 349:299–309. https://doi.org/10.1016/j.apsusc.2015.04.220

    Article  CAS  Google Scholar 

  37. Trovarelli A, Boaro M, Rocchini E, De Leitenburg C, Dolcetti G (2001) J Alloys Compd 323:584–591

    Article  Google Scholar 

  38. Nijhuis TA, Beers AW, Vergunst T, Hoek I, Kapteijn F, Moulijn JA (2001) Catal Rev 43(4):345–380. https://doi.org/10.1081/CR-120001807

    Article  CAS  Google Scholar 

  39. Mukasyan AS, Epstein P, Dinka P (2007) Proc Combust Inst 31:1789–1795

    Article  CAS  Google Scholar 

  40. Aruna ST, Mukasyan AS (2008) Curr Opin Solid State Mater Sci 12:44–50. https://doi.org/10.1016/j.cossms.2008.12.002

    Article  CAS  Google Scholar 

  41. Nersisyan HH, Lee JH, Ding J, Kim KS, Manukyan KV, Mukasyan AS (2017) Prog Energy Combust Sci 63:79–118

    Article  Google Scholar 

  42. Deganello F (2017) Mater Today 4:5507–5516

    Google Scholar 

  43. Gonzalez-Cortes SL, Imbert FE (2013) Appl Catal A 452:117–131. https://doi.org/10.1016/j.apcata.2012.11.024

    Article  CAS  Google Scholar 

  44. Wen W, Wu J-M (2014) RSC Adv 4:58090–58100. https://doi.org/10.1039/C4RA10145F

    Article  CAS  Google Scholar 

  45. Alves AK, Bergmann CP, Berutti FA (2013) Novel synthesis and characterization of nanostructured materials. Chapter 2. Combustion synthesis. Springer, Berlin, pp 11–22

    Google Scholar 

  46. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Chem Rev 116:14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  PubMed  Google Scholar 

  47. Zavyalova UF, Tretyakov VF, Burdeinaya TN, Lunin VV, Shitova NB, Ryzhova ND, Shmakov AN, Nizovskii AI, Tsyrulnikov PG (2005) Kinet Catal 46:752–757

    Article  CAS  Google Scholar 

  48. Dinka P, Mukasyan AS (2005) J Phys Chem B 109:21627–21633. https://doi.org/10.1021/jp054486n

    Article  CAS  PubMed  Google Scholar 

  49. Sharma S, Hegde MS (2006) Catal Lett 112:69–75. https://doi.org/10.1007/s10562-006-0166-z

    Article  CAS  Google Scholar 

  50. Mukasyan AS, Dinka P (2007) Intern J Self-Prop High-Temp Synth 16:23–35

    Article  CAS  Google Scholar 

  51. Zavyalova UF, Barbashova PS, Lermontov AS, Shitova NB, Tretyakov VF, Burdeinaya TN, Lunin VV, Drozdov VA, Yashnik SA, Ismagilov ZR, Tsyrulnikov PG (2007) Kinet Catal 48:162–167. https://doi.org/10.1134/S0023158407010211

    Article  CAS  Google Scholar 

  52. Manukyan KV, Cross A, Roslyakov S, Rouvimov S, Rogachev AS, Wolf EE, Mukasyan AS (2013) J Phys Chem C 117:24417–24427. https://doi.org/10.1021/jp408260m

    Article  CAS  Google Scholar 

  53. Civera A, Pavese M, Saracco G, Specchia V (2003) Catal Today 83:199–211. https://doi.org/10.1016/S0920-5861(03)00220-7

    Article  CAS  Google Scholar 

  54. Najjar H, Lamonier J-F, Mentre O, Giraudon J-M, Batis H (2011) Appl Catal B 106:149–159. https://doi.org/10.1016/j.apcatb.2011.05.019

    Article  CAS  Google Scholar 

  55. Deorsola FA, Andreoli S, Armandi M, Bonelli B, Pirone R (2016) Appl Catal A 522:120–129. https://doi.org/10.1016/j.apcata.2016.05.002

    Article  CAS  Google Scholar 

  56. Dhal GC, Dey S, Mohan D, Prasad R (2017) Mater Today 4:10489–10493

    Google Scholar 

  57. Malakhov VV (2008) Vasil’eva IG. Russ Chem Rev 77:370–392. https://doi.org/10.1070/RC2008v077n04ABEH003737

    Article  CAS  Google Scholar 

  58. Wang X, Qin M, Fang F, Jia B, Wu H, Qu X, Volinsky AA (2017) J Alloys Compd 719:288–295. https://doi.org/10.1016/j.jallcom.2017.05.187

    Article  CAS  Google Scholar 

  59. El-Shobaky GA, El-Shobaky HG, Badawy AAA, Fahmy YM (2011) Appl Catal A 409–410:234–238. https://doi.org/10.1016/j.apcata.2011.10.008

    Article  CAS  Google Scholar 

  60. Lu H, Zhou Y, Huang H, Zhang B, Chen Y (2011) J Rare Earths 29:855–860. https://doi.org/10.1016/S1002-0721(10)60555-8

    Article  CAS  Google Scholar 

  61. Kan J, Deng L, Li B, Huang Q, Zhu S, Shen S, Chen Y (2017) Appl Catal A 530:21–29. https://doi.org/10.1016/j.apcata.2016.11.013

    Article  CAS  Google Scholar 

  62. Zhang C, Wang C, Gil S, Boreave A, Retailleau L, Guo Y, Valverde JL, Giroir-Fendler A (2017) Appl Catal B 201:552–560. https://doi.org/10.1016/j.apcatb.2016.08.038

    Article  CAS  Google Scholar 

  63. Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreiini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) J Catal 150:94–104

    Article  CAS  Google Scholar 

  64. Ivanova AS, Slavinskaya EM, Mokrinskii VV, Polukhina IA, Tsybulya SV, Prosvirin IP, Bukhtiyarov VI, Rogov VA, Zaikovskii VI, Noskov AS (2004) J Catal 221:213–224. https://doi.org/10.1016/j.jcat.2003.06.001

    Article  CAS  Google Scholar 

  65. Ferrandon M, Carno J, Jaras S, Bjornbom E (1999) Appl Catal A Gen 180:141–151

    Article  CAS  Google Scholar 

  66. Strohmeier BR, Hercules DM (1984) J Phys Chem 88:4922–4929. https://doi.org/10.1021/j150665a026

    Article  CAS  Google Scholar 

  67. Aboukaïs A, Abi-Aad E, Taouk B (2013) Mater Chem Phys 142:564–571. https://doi.org/10.1016/j.matchemphys.2013.07.053

    Article  CAS  Google Scholar 

  68. Yashnik SA, Ishchenko AV, Dovlitova LS, Ismagilov ZR (2017) Top Catal 60:52–72. https://doi.org/10.1007/s11244-016-0722-8

    Article  CAS  Google Scholar 

  69. Yashnik SA, Chesalov YA, Ishchenko AV, Kaichev VV, Ismagilov ZR (2017) Appl Catal B 204:89–106. https://doi.org/10.1016/j.apcatb.2016.11.018

    Article  CAS  Google Scholar 

  70. Gandia LM, Vicente MA, Gil A (2000) Appl Catal A Gen 196:281–292

    Article  CAS  Google Scholar 

  71. Fierro JLG, Tascon JMD, Gonzalez Tejuca L (1994) J Catal 89:209–216

    Article  Google Scholar 

  72. Rode EYa (1952) Oxygen compounds of manganese. USSR Academy of Sciences, Moscow, p 245 (in Russian)

    Google Scholar 

  73. Lever ABP (1984) Inorganic electron spectroscopy, vol 2. Elsevier, Hoboken, p 493

    Google Scholar 

  74. Parida KM, Dash SS, Singha S (2008) Appl Catal A 351:59–67. https://doi.org/10.1016/j.apcata.2008.08.027

    Article  CAS  Google Scholar 

  75. Kijlstra WS, Poels EK, Bliek A, Weckhuysen BM, Schoonheydt RA (1997) J Phys Chem B 101:309–316. https://doi.org/10.1021/jp962343i

    Article  CAS  Google Scholar 

  76. Wan H, Li D, Dai Y, Hu Y, Liu B, Dong L (2010) J Mol Catal A: Chem 332:32–44. https://doi.org/10.1016/j.molcata.2010.08.016

    Article  CAS  Google Scholar 

  77. Ismagilov IZ, Matus EV, Kuznetsov VV, Kerzhentsev MA, Yashnik SA, Larina TV, Prosvirin IP, Navarro RM, Fierro JLG, Gerritsen G, Abbenhuis HCL, Ismagilov ZR (2016) Eurasian Chem-Technol J 18:93–110

    Article  CAS  Google Scholar 

  78. Velu S, Shah N, Jyothi TM, Sivasanker S (1999) Microporous Mesoporous Mater 33:61–75

    Article  CAS  Google Scholar 

  79. Piumetti M, Fino D, Russo N (2015) Appl Catal B 163:277–287. https://doi.org/10.1016/j.apcatb.2014.08.012

    Article  CAS  Google Scholar 

  80. Ferrandon M, Carno J, Jaras S, Bjornbom E (1999) Appl Catal A Gen 180:153–161

    Article  CAS  Google Scholar 

  81. Yashnik SA, Kuznetsov VV, Ismagilov ZR, Ushakov VV, Danchenko NM, Denisov SP (2004) Top Catal 30(31):293–298. https://doi.org/10.1023/B:TOCA.0000029765.54179.c9

    Article  Google Scholar 

  82. Zhang X, Deng Y-D, Tian P, Shang H, Xu J, Han Y-F (2016) Appl Catal B 191:179–191

    Article  CAS  Google Scholar 

  83. Cellier C, Ruaux V, Lahousse C, Grange P, Gaigneaux EM (2006) Catal Today 117:350–355

    Article  CAS  Google Scholar 

  84. Liu P, He H, Wei G, Liu D, Liang X, Chen T, Zhu J, Zhu R (2017) Microporous Mesoporous Mater 239:101–110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Russian Foundation for Basic Research and Government of the Novosibirsk Region (Project No. 17-43-540747_p-a, 19-43-540-017_p-a). The authors are grateful to researchers from the Boreskov Institute of Catalysis SB RAS V.A. Ushakov, M.S. Melgunov, and G.S. Litvak for their assistance with physicochemical studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadezhda V. Shikina or Svetlana A. Yashnik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikina, N.V., Yashnik, S.A., Gavrilova, A.A. et al. Effect of Glycine Addition on Physicochemical and Catalytic Properties of Mn, Mn–La and Mn–Ce Monolithic Catalysts Prepared by Solution Combustion Synthesis. Catal Lett 149, 2535–2551 (2019). https://doi.org/10.1007/s10562-019-02841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02841-4

Keywords

Navigation