Skip to main content
Log in

Co-immobilization of Short-Chain Dehydrogenase/Reductase and Glucose Dehydrogenase for the Efficient Production of (±)-Ethyl Mandelate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Derivatives of (±)-ethyl mandelate are important intermediates in the synthesis of numerous pharmaceuticals. Therefore, efficient routes for the production of these derivatives are highly desirable. The short-chain dehydrogenase/reductase (SDR) is a biocatalyst that could potentially be applied to the synthesis of (±)-ethyl mandelate; however, this enzyme requires the reduced form of the cofactor nicotine adenine dinucleotide (phosphate) (NAD(P)H), which is expensive. In this study, we developed a co-immobilization strategy to overcome the issue of NADPH demand in the SDR catalytic process. The SDR from Thermus thermophilus HB8 and the NAD(P)-dependent glucose dehydrogenase (GDH) from Thermoplasma acidophilum DSM 1728 were co-immobilized on silica gel. The properties and the catalytic abilities of this dual-enzyme system were evaluated. A final yield of 1.17 mM (±)-ethyl mandelate was obtained from the catalytic conversion of ethyl benzoylformate, with a conversion rate of ethyl benzoylformate to (S)-(+)-mandelate of 71.86% and in an enantiomeric excess of > 99% after 1.5 h. This system offers an efficient route for the biosynthesis of (±)-ethyl mandelate.

Graphical Abstract

In this study, we developed a co-immobilization strategy to overcome the issue of NADPH demand in the SDR catalytic process. The SDR from Thermus thermophilus HB8 and the NAD(P)-dependent glucose dehydrogenase (GDH) from Thermoplasma acidophilum DSM 1728 were co-immobilized on silica gel. Results showed that, this dual-system offers an efficient route for the biosynthesis of (±)-ethyl mandelate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kasprzak J, Rauter M, Denter S et al (2016) J Mol Catal B 133:176–186

    Article  CAS  Google Scholar 

  2. Poterała M, Dranka M, Borowiecki P (2017) Eur J Org Chem 16:2290–2304

    Article  CAS  Google Scholar 

  3. Zhang XH, Liu ZQ, Xue YP et al (2018) Appl Biochem Biotechnol 184: 1024–1035

    Article  CAS  PubMed  Google Scholar 

  4. Martínková L, Křen V (2018) Appl Biochem Biotechnol 102: 3893–3900

    Google Scholar 

  5. Lima RN, Porto AL (2017) Catal Commun 100:157–163

    Article  CAS  Google Scholar 

  6. Kallberg Y, Oppermann U, Persson B (2010) FEBS J 277:2375–2386

    Article  CAS  PubMed  Google Scholar 

  7. Persson B, Kallberg Y (2013) Chem Bio Interact 202:111–115

    Article  CAS  Google Scholar 

  8. Sonawane PD, Heinig U, Panda S et al (2018) Proc Natl Acad Sci USA 115:5419–5428

    Article  CAS  Google Scholar 

  9. Müller M, Roth S, Kilgore M et al (2018) ChemBioChem 19:1849–1852

    Article  CAS  PubMed  Google Scholar 

  10. Riegert AS, Thoden JB, Schoenhofen IC et al (2017) Biochemistry 56:6030–6040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferri S, Kojima K, Sode K (2011) J Diabetes Sci Technol 5:1068–1076

    Article  PubMed  PubMed Central  Google Scholar 

  12. Asada Y, Endo S, Inoue Y et al (2009) Chem Biol Interact 178:117–126

    Article  CAS  PubMed  Google Scholar 

  13. Budgen N, Danson MJ (1986) FEBS Lett 196:207–210

    Article  CAS  Google Scholar 

  14. Smith L, Budgen N, Bungard S et al (1989) Biochem J 261:973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohshima T, Ito Y, Sakuraba H al (2003) J Mol Catal B-Enzym 2:281–289

    Article  CAS  Google Scholar 

  16. Kanoh K, Uehara S, Iwata H et al (2014) Acta Crystallogr D 70:1271–1280

    Article  CAS  PubMed  Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (2000) Q Rev Biol 186:182–183

    Google Scholar 

  18. Sachadyn P, Jedrzejczak R, Milewski S et al (2000) Protein Expres Purif 19:343–349

    Article  CAS  Google Scholar 

  19. Deng MD, Severson DK, Grund AD et al (2005) Metab Eng 7:201–214

    Article  CAS  Google Scholar 

  20. Kruger NJ (1998) Methods Mol Biol 32:9–15

    Google Scholar 

  21. Zhou S, Zhang SC, Lai DY et al (2013) Biotechnol Lett 35:359–365

    Article  CAS  PubMed  Google Scholar 

  22. Pennacchio A, Giordano A, Pucci B et al (2010) Extremophiles 14:193–204

    Article  CAS  PubMed  Google Scholar 

  23. Pennacchio A, Pucci B, Secundo F et al (2008) Appl Environ Microb 74:3949–3958

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Natural Science Foundation cultivation project of Jining medical university (Grant No. JYP201704), the Supporting Fund for Teachers’ research of Jining Medical University (Grant No. JYFC2018KJ031), the Startup Fund of Jining Medical University (Grant No. 6001/600557001), and the National Natural Science Foundation of China (Grant No. 21376215). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from the one mentioned above. We thank Hayden Peacock, PhD, from Liwen Bianji, Edanz Editing China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Zhao-hui Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 127 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xh., Du, X., Feng, Jr. et al. Co-immobilization of Short-Chain Dehydrogenase/Reductase and Glucose Dehydrogenase for the Efficient Production of (±)-Ethyl Mandelate. Catal Lett 149, 1710–1720 (2019). https://doi.org/10.1007/s10562-019-02727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02727-5

Keywords

Navigation