Skip to main content
Log in

Continuous Hydrogenolysis of Glycerol to 1,2-Propanediol Over Bi-metallic Ni–Ag Supported on γ-Al2O3 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Continuous hydrogenolysis of glycerol was carried over bimetallic Ni–Ag supported on γ-Al2O3 catalysts. These catalysts were prepared by co-impregnation method. The catalysts surface and structural properties were derived from CO chemisorption, X-ray diffraction, temperature programmed reduction, temperature programmed desorption of NH3 and X-ray photoelectron spectroscopy. The presence of Ag led to the improvement in the dispersion, metal area and particle size of the Ni. Hydrogenolysis activity of Ni was enhanced by the synergistic effect of Ag. The catalyst with 10% Ni–5% Ag/γ-Al2O3 gave about 80% of glycerol conversion with 58% selectivity towards 1,2-propanediol. Effect of various reaction parameters on glycerol conversion and selectivity were also investigated and optimum condition were established. The time on stream analysis was carried and the catalysts exhibited stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fukuda H, Kondo A, Noda H (2001) J Biosci Bioeng 92:405

    Article  CAS  Google Scholar 

  2. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13

    Article  CAS  Google Scholar 

  3. Marchetti JM, Miguel VU, Errazu AF (2007) Renew Sustain Energy Rev 11:1300

    Article  CAS  Google Scholar 

  4. Gallezot P (2007) Catal Today 121:76.

    Article  CAS  Google Scholar 

  5. Sato S, Akiyama M, Inui K, Yokota M (2009) Chem Lett 38:560

    Article  CAS  Google Scholar 

  6. Rekha V, Sumana C, Paul Douglas S, Lingaiah N (2015) Appl Catal A 491:155

    Article  CAS  Google Scholar 

  7. Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253

    Article  CAS  Google Scholar 

  8. Rahmat N, Abdullah AZ, Mohamed AR (2010) Renew Sustain Energy Rev 14:987.

    Article  CAS  Google Scholar 

  9. Mizugaki T, Arundhathi R, Mitsudome T, Jitsukawa K, Kaneda K (2014) ACS Sustain Chem Eng 2:574

    Article  CAS  Google Scholar 

  10. Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2010) Appl Catal B 98:94

    Article  CAS  Google Scholar 

  11. Haas T, Jaeger B, Weber R, Mitchell SF (2005) Appl Catal A 280:83

    Article  CAS  Google Scholar 

  12. Martin AE, Murphy FH (1994) Kirk-Othmer encyclopedia of chemical technology. Wiley-Interscience, New York

    Google Scholar 

  13. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2008) Catal Lett 120:307

    Article  CAS  Google Scholar 

  14. Balaraju M, Rekha V, Prabhavathi Devi BLA, Prasad RBN, Sai Prasad PS, Lingaiah N (2010) Appl Catal A 384:107

    Article  CAS  Google Scholar 

  15. Li Y, Ma L, Liu H, He D (2014) Appl Catal A 469:45

    Article  CAS  Google Scholar 

  16. D’Hondt E, Vyver SVd, Sels BF, Jacobs PA (2008) Chem Commun 61:6011

    Article  Google Scholar 

  17. Gandarias I, Arias PL, Requies J, Güemez MB, Fierro JLG (2010) Appl Catal B 97:248

    Article  CAS  Google Scholar 

  18. Huang L, Zhu YL, Zheng HY, Li YW, Zeng ZY (2008) J Chem Technol Biotechnol 83:1670.

    Article  CAS  Google Scholar 

  19. Balaraju M, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2012) Catal Sci Technol 2:1967.

    Article  CAS  Google Scholar 

  20. Wu Z, Mao Y, Song M, Yin X, Zhang M (2013) Catal Commun 32:52

    Article  Google Scholar 

  21. Balaraju M, Rekha V, Prasad PSS, Prasad RBN, Lingaiah N (2008) Catal Lett 126:119

    Article  CAS  Google Scholar 

  22. Perosa A, Tundo P (2005) Ind Eng Chem Res 44:8535

    Article  CAS  Google Scholar 

  23. Guo X, Li Y, Shi R, Liu Q, Zhan E, Shen W (2009) Appl Catal A 371:108

    Article  CAS  Google Scholar 

  24. Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) J Catal 251:281.

    Article  CAS  Google Scholar 

  25. Daniel OM, DeLaRiva A, Kunkes EL, Datye AK, Dumesic JA, Davis RJ (2010) Chem Cat Chem 2:1107

    CAS  Google Scholar 

  26. Xia S, Yuan Z, Wang L, Chen P, Hou Z (2012) Bioresour Technol 104:814

    Article  CAS  Google Scholar 

  27. Gandarias I, Fernández SG, El Doukkali M, Requies J, Luis Arias P (2013) Top Catal 56:995

    Article  CAS  Google Scholar 

  28. Chiu CW, Dasari MA, Suppes GJ, Sutterlin WR (2006) AIChE J 52:3543

    Article  CAS  Google Scholar 

  29. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Appl Catal A 281:225

    Article  CAS  Google Scholar 

  30. Zhu S, Gao X, Zhu Y, Zhu Y, Zheng H, Li Y (2013) J Catal 303:70

    Article  CAS  Google Scholar 

  31. Akiyama M, Sato S, Takahashi R, Inui K, Yokota M (2009) Appl Catal A 371:60

    Article  CAS  Google Scholar 

  32. Tuck MWM, Tilley SN, US Patent 2010/0204527

  33. Bienholz A, Hofmann H, Claus P (2011) Appl Catal A 391:153

    Article  CAS  Google Scholar 

  34. Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C (2008) Chem Mater 20:5090

    Article  CAS  Google Scholar 

  35. Pavan Kumar V, Srikanth CS, Nageswara Rao A, Chary KVR (2014) ‎J Nanosci Nanotechnol 14:3137

    Article  CAS  Google Scholar 

  36. Pavan Kumar V, Kumar A, Srinivasa Rao G, Chary KVR (2015) Catal Today 250:226

    Article  Google Scholar 

  37. Pavan Kumar V, Beltramini JN, Shanthi Priya S, Srikanth A, Bhanuchander P, Chary KVR (2016) Appl Petrochem Res 6:73.

    Article  Google Scholar 

  38. Feng Y, Yin H, Shen L, Wang A, Shen Y, Jiang T (2013) Chem Eng Technol 36:73

    Article  Google Scholar 

  39. Mane RB, Rode CV (2012) Org Process Res Dev 16:1043.

    Article  CAS  Google Scholar 

  40. Stytsenko VD (1995) Appl Catal A 126:1

    Article  CAS  Google Scholar 

  41. Zhu ZQ, Lu ZH, Li B, Guo SZ (2006) Appl Catal A 302:208

    Article  CAS  Google Scholar 

  42. Epron F, Gauthard F, Barbier J (2002) Appl Catal A 237:253

    Article  CAS  Google Scholar 

  43. Sun D, Yamada YY, Sato S (2014) Appl Catal A 475:63

    Article  CAS  Google Scholar 

  44. Pandhare NN, Pudi SM, Biswas P, Sinha S (2016) J Taiwan Inst Chem Eng 61:90

    Article  CAS  Google Scholar 

  45. Lee M, Kyu Hwang Y, Jong-San C, Ho-Jeong C, Dong Won H (2016) Catal Commun 84:5

    Article  CAS  Google Scholar 

  46. Hengne AM, Malawadkar AV, Biradar NS, Rode CV (2014) RSC Adv 4:9730.

    Article  CAS  Google Scholar 

  47. Sato S, Sakai D, Sato F, Yamada Y (2012) Chem Lett 41:965

    Article  CAS  Google Scholar 

  48. Wojcieszak R, Monteverdi S, Ghanbaja J, Bettahar MM (2008) J Colloid Interface Sci 317:166

    Article  CAS  Google Scholar 

  49. El Doukkali M, Iriondo A, Cambra JF, Gandarias I, Jalowiecki-Duhamel L, Dumeignil F, Arias PL (2014) Appl Catal A 472:80

    Article  CAS  Google Scholar 

  50. Liao HM, Sodhi RNS, Coyle TW, Vac J (1993) Sci Technol 11:2681

    CAS  Google Scholar 

  51. Harisekhar M, Pavan Kumar V, Shanthi Priya S, Chary KVR (2015) J Chem Technol Biotechnol 90:1906

    Article  CAS  Google Scholar 

  52. Zheng J, Zhu W, Ma C, Hou Y, Zhang W, Wang Z (2010) React Kinet Mech Catal 99:455

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors VR thanks CSIR, New Delhi for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lingaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekha, V., Raju, N., Sumana, C. et al. Continuous Hydrogenolysis of Glycerol to 1,2-Propanediol Over Bi-metallic Ni–Ag Supported on γ-Al2O3 Catalysts. Catal Lett 147, 1441–1452 (2017). https://doi.org/10.1007/s10562-017-2052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2052-2

Keywords

Navigation