Skip to main content
Log in

NaCl-Promoted CuO–RuO2/SiO2 Catalysts for Propylene Epoxidation with O2 at Atmospheric Pressures: A Combinatorial Micro-reactor Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A combinatorial approach is used to investigate several alkali metals promoted Cu–Ru binary oxide catalysts with improved catalytic performance in the propylene partial oxidation. 2 %Cu/5 %Ru/c–SiO2 catalyst had the best yield with high propylene conversion and propylene oxide (PO) selectivity. Among the promoters screening in the study, NaCl promotion significantly increased the PO selectivity accompanied by some attenuation in the total propylene conversion. It was proposed that binary oxide catalysts revealed a greater number of exposed catalytically active adsorption sites as compared to monometallic oxide counterparts according to XPS and FTIR results. Besides NaCl addition alters the structure, yielding a significantly improved PO selectivity without any change in the particle size of Cu and Ru oxide according to XRD analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Monnier JR (2001) Appl Catal 221:73

    Article  CAS  Google Scholar 

  2. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 4:3447

    Article  Google Scholar 

  3. Clerici MG, Bellussi G, Romano U (1991) J Catal 129:159

    Article  CAS  Google Scholar 

  4. Zuwei X, Ning Z, Yu S, Kunlan L (2001) Science 292:1139

    Article  CAS  Google Scholar 

  5. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Science 300:964

    Article  CAS  Google Scholar 

  6. Wang R, Guo X, Wang X, Hao J, Li G, Xiu J (2004) J Appl Catal A 261:7

    Article  CAS  Google Scholar 

  7. Hayashi T, Tanaka K, Haruta M (1988) J Catal 178:566

    Article  Google Scholar 

  8. Sinha AK, Seelan S, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:1546

    Article  CAS  Google Scholar 

  9. Chowdhury B, Bravo-Sarez JJ, Date M, Tsubota S, Haruta M (2006) Angew Chem Int Ed 45:412

    Article  CAS  Google Scholar 

  10. Ananieva E, Reitzmann A (2004) Chem Eng Sci 59:5509

    Article  CAS  Google Scholar 

  11. Wang Y, Yang W, Yang LJ, Wang XX, Zhang QH (2006) Catal Today 117:156

    Article  CAS  Google Scholar 

  12. Sacaliuc E, Beale AM, Weckhuysen BM, Nijhuis TA (2007) J Catal 248:235

    Article  CAS  Google Scholar 

  13. Stangland EE, Stavens KB, Andres RP, Delgass WN (2000) J Catal 191:332

    Article  CAS  Google Scholar 

  14. Qi C, Akita T, Okumura M, Haruta M (2001) Appl Catat A 218:81

    Article  CAS  Google Scholar 

  15. Zwijnenburg A, Makkee M, Moulijn JA (2004) Appl Catal 270:49

    Article  CAS  Google Scholar 

  16. Lu GZ, Zuo XB (1999) Catal Lett 58:67

    Article  CAS  Google Scholar 

  17. Lu J, Luo M, Lei H, Li C (2002) Appl Catal A 237:11

    Article  CAS  Google Scholar 

  18. Palermo A, Husain A, Tikhov M, Lamber RM (2002) J Catal 207:331

    Article  CAS  Google Scholar 

  19. Zemicheael F, Palermo A, Tikhov M, Lambert RM (2002) Catal Lett 80:93

    Article  Google Scholar 

  20. Jin G, Lu G, Guo Y, Guo Y, Wang J, Liu X (2003) Catal Lett 87:249

    Article  CAS  Google Scholar 

  21. Takahashi A, Hamakawa N, Nakamura I, Fujitani T (2005) Appl Catal A 294:34

    Article  CAS  Google Scholar 

  22. Lu J, Bravo-Suárez JJ, Takahashi A, Haruta M, Oyama ST (2005) J Catal 232:85

    Article  CAS  Google Scholar 

  23. Lu J, Bravo-Suárez JJ, Haruta M, Oyama ST (2006) Appl Catal A 302:283

    Article  CAS  Google Scholar 

  24. Yao W, Guo Y, Liu X, Guo Y, Wang Y, Wang Y, Zhang Z, Lu G (2007) Catal Lett 119:185

    Article  CAS  Google Scholar 

  25. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328:224

    Article  CAS  Google Scholar 

  26. Suo Z, Jin M, Lu J, Wei Z, Li C (2008) J Nat Gas Chem 17:184

    Article  CAS  Google Scholar 

  27. Wang R, Guo X, Wang X, Hao J (2003) Catal Lett 90:57

    Article  CAS  Google Scholar 

  28. Wang R, Hao J, Guo X, Wang X, Liu X (2004) Stud Surf Sci Catal 154:2632

    Article  Google Scholar 

  29. Wang Y, Chu H, Zhu W, Zhang Q (2008) Catal Today 131:496

    Article  CAS  Google Scholar 

  30. Lambert RM, Williams FJ, Cropley RL, Palermo A (2005) J Mol Catal A 228:27

    Article  CAS  Google Scholar 

  31. Torres D, Lopez N, Illas F, Lambert RM (2007) Angew Chem Int Edit 46:2055–2058

    Article  CAS  Google Scholar 

  32. Kizilkaya AC, Senkan S, Onal I (2010) J Mol Catal A 330:107

    Article  CAS  Google Scholar 

  33. Vaughan OPH, Kyriakou G, Macleod N, Tikhov M, Lambert RM (2005) J Catal 236:401

    Article  CAS  Google Scholar 

  34. Zhu W, Zhang Q, Wang Y (2008) J Phys Chem C112:7731

    Google Scholar 

  35. Onal I, Düzenli D, Seubsai A, Kahn M, Seker E, Senkan S (2010) Top Catal 53:92

    Article  CAS  Google Scholar 

  36. Kahn M, Seubsai A, Onal I, Senkan S (2010) Comb Chem High Throughput Screen 13:67

    Article  CAS  Google Scholar 

  37. Seubsai A, Kahn M, Senkan S (2011) Chem Cat Chem 3:174

    CAS  Google Scholar 

  38. He J, Zhai Q, Zhang Q, Deng W, Wang Y (2013) J Catal 299:53

    Article  CAS  Google Scholar 

  39. Duzenli D, Seker E, Senkan S, Onal I (2012) Catal Lett 142:1234

    Article  CAS  Google Scholar 

  40. Senkan S (2001) Angew Chem Int Ed 40:312

    Article  CAS  Google Scholar 

  41. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  42. Chetty R, Xia W, Kundu S, Bron M, Reinecke T, Schuhmann W, Muhler M (2009) Langmuir 25:3853

    Article  CAS  Google Scholar 

  43. Zeng Q, Zheng L, Zeng J, Liao S (2012) J Power Sources 205:201

    Article  CAS  Google Scholar 

  44. Peebles DE, Peebles HC, Ohlhausen JA (1998) Colloids Surf A 144:89

    Article  CAS  Google Scholar 

  45. Lee S, Song D, Kim D, Lee J, Kim S, Park IY, Choi YD (2004) Mater Lett 58:342

    Article  CAS  Google Scholar 

  46. Hadjiivanov K, Knözinger H (2001) Phys Chem Chem Phys 3:1132

    Article  CAS  Google Scholar 

  47. Busca G (1987) J Mol Catal 43:225

    Article  CAS  Google Scholar 

  48. Yokomizo GH, Louis C, Bell AT (1989) J Catal 120:1

    Article  CAS  Google Scholar 

  49. Sayan S, Kantcheva M, Suzer S, Uner DO (1999) J Mol Struct 480–481:241

    Article  Google Scholar 

  50. Kantcheva M, Sayan S (1999) Catal Lett 60:27

    Article  CAS  Google Scholar 

  51. Guglielminotti E, Bond GC (1990) J Chem Soc Faraday Trans 86:979

    Article  CAS  Google Scholar 

  52. Robbins JL (1989) J Catal 115:120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by TÜBİTAK through MAG Project No: 108T378. High throughput testing facilities at UCLA were provided by Prof. Selim Senkan. E.O. acknowledges support from Turkish Academy of Sciences (TUBA) through the “Outstanding Young Investigator” Grant. E.V. acknowledges RFBR (Russia) #12-03-91373-CT_a, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isik Onal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyoncu, Ş., Düzenli, D., Onal, I. et al. NaCl-Promoted CuO–RuO2/SiO2 Catalysts for Propylene Epoxidation with O2 at Atmospheric Pressures: A Combinatorial Micro-reactor Study. Catal Lett 145, 596–605 (2015). https://doi.org/10.1007/s10562-014-1454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1454-7

Keywords

Navigation