Skip to main content
Log in

Effects of Synthesis Routes on the States and Catalytic Performance of Manganese Oxides Used for Diesel Soot Combustion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalyst obtained through the co-precipitation of Mn(Ac)2 and (NH4)2CO3 (denoted as Mn–Ac–NH4) displays the highest performance for soot oxidation. Compared with other MnOx catalysts, the catalyst Mn–Ac–NH4 exhibits much better reducibility and more uniform sponge-like nanostructure. The characterization results indicate that the oxygen species on the surface of Mn–Ac–NH4 are more active for soot combustion. The NO species can also be captured and oxidized by these oxygen species, generating more reactive NO2 which can enhance soot oxidation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kimura R, Wakabayashi J, Elangovan SP, Ogura M, Okubo T (2008) J Am Chem Soc 130:12844

    Article  CAS  Google Scholar 

  2. van Setten B, Makkee M, Moulijn JA (2001) Catal Rev 43:489

    Article  Google Scholar 

  3. Machida M, Murata Y, Kishikawa K, Zhang DJ, Ikeue K (2008) Chem Mater 20:4489

    Article  CAS  Google Scholar 

  4. Zhang ZL, Zhang YX, Wang ZP, Gao XY (2010) J Catal 271:12

    Article  CAS  Google Scholar 

  5. Wei YC, Liu J, Zhao Z, Chen YS, Xu CM, Duan AJ, Jiang GY, He H (2011) Angew Chem Int Ed 50:2326

    Article  CAS  Google Scholar 

  6. Dai FF, Meng M, Zha YQ, Li ZQ, Hu TD, Xie YN, Zhang J (2012) Fuel Process Technol 104:43

    Article  CAS  Google Scholar 

  7. Kim SC, Shim WG (2010) Appl Catal B 98:180

    Article  CAS  Google Scholar 

  8. Luo Y, Deng YQ, Mao W, Yang XJ, Zhu K, Xu J, Han YF (2012) J Phys Chem C 116:20975

    Article  CAS  Google Scholar 

  9. Frey K, Iablokov V, Sáfrán G, Osán J, Sajó I, Szukiewicz R, Chenakin S, Kruse N (2012) J Catal 287:30

    Article  CAS  Google Scholar 

  10. Li Q, Meng M, Xian H, Tsubaki N, Li XG, Xie YN, Hu TD, Zhang J (2010) Environ Sci Technol 44:4747

    Article  CAS  Google Scholar 

  11. Wu XD, Liu S, Weng D, Lin F, Ran R (2011) J Hazard Mater 187:283

    Article  CAS  Google Scholar 

  12. Tikhomirov K, Krocher O, Elsener M, Wokaun A (2006) Appl Catal B 64:72

    Article  CAS  Google Scholar 

  13. Brock SL, Duan N, Tian ZY, Giraldo O, Zhou H, Suib SL (1998) Chem Mater 10:2619

    Article  CAS  Google Scholar 

  14. Fernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA (2004) Chem Rev 10:4063

    Article  Google Scholar 

  15. Guo L, Xian H, Li QF, Chen D, Tan YS, Zhang J, Zheng LR, Li XG (2013) J Hazard Mater 260:543

    Article  CAS  Google Scholar 

  16. Kapteijn F, van Langeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) J Catal 150:94

    Article  CAS  Google Scholar 

  17. Park E, Chin S, Jeong J, Jurng J (2012) Microporous Mesoporous Mater 163:96

    Article  CAS  Google Scholar 

  18. Pérez H, Navarro P, Delgado JJ, Montes M (2011) Appl Catal A 400:238

    Article  Google Scholar 

  19. Kang M, Park ED, Kim JM, Yie JE (2007) Appl Catal A 327:261

    Article  CAS  Google Scholar 

  20. Quartieri S, Riccardi MP, Messiga B, Boscherini F (2005) J Non-Cryst Solids 351:3013

    Article  CAS  Google Scholar 

  21. Tang QH, Huang XN, Wu CM, Zhao PZ, Chen YT, Yang YH (2009) J Mol Catal A 306:48

    Article  CAS  Google Scholar 

  22. Carnö J, Ferrandon M, Björnbom E, Järås S (1997) Appl Catal A 155:265

    Article  Google Scholar 

  23. Trawczyński J, Bielak B, Miśta W (2005) Appl Catal B 55:277

    Article  Google Scholar 

  24. Li ZQ, Meng M, Zha YQ, Dai FF, Hu TD, Xie YN, Zhang J (2012) Appl Catal B 121–122:65

    Article  Google Scholar 

  25. Liu J, Zhao Z, Xu CM, Duan AJ (2008) Appl Catal B 78:61

    Article  CAS  Google Scholar 

  26. Liu J, Zhao Z, Xu CM, Duan AJ, Jiang GY (2008) J Phys Chem C 112:5930

    Article  CAS  Google Scholar 

  27. Guo X, Meng M, Dai FF, Li Q, Zhang ZL, Jiang Z, Zhang S, Huang YY (2013) Appl Catal B 142–143:278

    Article  Google Scholar 

  28. Ponce S, Pena MA, Fierro JLG (2000) Appl Catal B 24:193

    Article  CAS  Google Scholar 

  29. Lee YN, Lago RM, Fierro JL, Cortés V, Sapińa F, Martínez E (2001) Appl Catal A 207:17

    Article  CAS  Google Scholar 

  30. Dai Y, Wang XY, Dai QG, Li D (2012) Appl Catal B 111–112:141

    Article  Google Scholar 

  31. Shaheen WM, Selim MM (2000) J Therm Anal Calorim 59:961

    Article  CAS  Google Scholar 

  32. Han Y-F, Chen LW, Ramesh K, Widjaja E, Chilukoti S, Surjami IK, Chen J (2008) J Catal 253:261

    Article  CAS  Google Scholar 

  33. Han Y-F, Chen LW, Ramesh K, Zhong ZY, Chen FX, Chin J, Mook H (2008) Catal Today 131:35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (21276184, U1332102), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120032110014) and the Program of Introducing Talents of Discipline to University of China (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Yu, Y., Meng, M. et al. Effects of Synthesis Routes on the States and Catalytic Performance of Manganese Oxides Used for Diesel Soot Combustion. Catal Lett 144, 1210–1218 (2014). https://doi.org/10.1007/s10562-014-1268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1268-7

Keywords

Navigation