Skip to main content
Log in

Atmospheric Hydrodeoxygenation of Guaiacol over Nickel Phosphide Catalysts: Effect of Phosphorus Composition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The phosphorous composition of nickel phosphide catalysts in atmospheric guaiacol hydrodeoxygenation (HDO) was investigated. Various initial Ni/P molar ratios, ranging from 0 to ∞, were used to prepare the catalysts. The physicochemical properties of the catalysts were characterized. The catalytic performances were evaluated in a continuous fixed-bed system at 300 °C with different contact times under atmospheric pressure. The phosphorous contents affected both the active phase compositions and catalytic performances of nickel phosphide catalysts. Ni2P, Ni12P5, and Ni3P were identified as the major active phases on the Ni/P = 1, 2, and 3 samples, respectively. Mostly, the P-rich catalyst exhibited lower guaiacol conversions but higher amounts of deoxygenated products (e.g. benzene) and less coke than the P-lean sample did. A guaiacol HDO network containing demethylation (DME), demethoxylation (DMO), direct deoxygenation (DDO), hydrogenation (HYD), and transalkylation (TRA) was proposed. The intrinsic activity decreased following the order as Ni/P = 3 > 1 > 2 at short contact times, and Ni/P = 1 and 2 samples are likely to enhance the rate of hydrogen transfer at long contact times. The pseudo-first-order kinetics analysis also indicated that phosphorous content has a negative effect on guaiacol conversion. The product selectivity at zero guaiacol conversion revealed that the Ni/P = 1 sample promoted guaiacol DMO and phenol DDO. The samples with Ni/P = 2 and 3 enhanced guaiacol DME and TRA. The bifunctional property (HYD on Ni and protonation on PO–H) of Ni2P/SiO2 and the Brønsted acidity of Ni12P5/SiO2 and Ni3P/SiO2 affected their catalytic behaviors. Lifetime testings showed that all catalysts deactivated in long-term operations but with different extents. The Ni/P = 1 sample displayed the highest deactivation rate of guaiacol conversion (~78 %) while the Ni/P = 3 sample had the lowest (~46 %). Coking and phosphide leaching are attributed to cause the deactivation of nickel phosphide catalysts in guaiacol HDO.

Graphical Abstract

Phosphorous content influences active phase structure and surface morphology of nickel phosphide supported catalysts, and thereby mediates different guaiacol hydrodeoxygenation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  2. Carlson TR, Vispute TP, Huber GW (2008) ChemSusChem 1:397

    Article  CAS  Google Scholar 

  3. Gürbüz EI, Gallo JMR, Alonso DM, Wettstein SG, Lim WY, Dumesic JA (2013) Angew Chem Int Ed 52:1270

    Article  Google Scholar 

  4. Gürbüz EI, Wettstein SG, Dumesic JA (2012) ChemSusChem 5:383

    Article  Google Scholar 

  5. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Chem Eur J 17:5939

    Article  CAS  Google Scholar 

  6. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552

    Article  CAS  Google Scholar 

  7. Hofrichter M (2002) Enzyme Microb Technol 30:454

    Article  CAS  Google Scholar 

  8. Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass—volume II results of screening for potential candidates from biorefinery lignin. PNNL-16983; Pacific Northwest National Laboratory, Richland.

  9. Gosselink RJA, de Jong E, Guran B, Abächerli A (2004) Ind Crops Prod 20:121

    Article  CAS  Google Scholar 

  10. Furimsky E (2000) Appl Catal A 199:147

    Article  CAS  Google Scholar 

  11. Bridgwater AV (2012) Biomass Bioenergy 38:68

    Article  CAS  Google Scholar 

  12. Furimsky E (2013) Catal Today 217:13

    Article  CAS  Google Scholar 

  13. Elliott DC, Baker EG (1984) Biotechnol Bioeng Symp 14:159

    CAS  Google Scholar 

  14. Zhao C, Kou Y, Lemonidou AA, Li XB, Lercher JA (2010) Chem Commun 46:412

    Article  CAS  Google Scholar 

  15. Zhao C, He JY, Lemonidou AA, Li XB, Lercher JA (2011) J Catal 280:8

    Article  CAS  Google Scholar 

  16. Zhao C, Lercher JA (2012) ChemCatChem 4:64

    Article  CAS  Google Scholar 

  17. Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2011) Appl Catal B 115–116:63

    Google Scholar 

  18. Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305

    Article  CAS  Google Scholar 

  19. Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC (2011) Energy Fuels 25:3417

    Article  CAS  Google Scholar 

  20. Nimmanwudipong T, Runnebaum R, Block D, Gates B (2011) Catal Lett 141:779

    Article  CAS  Google Scholar 

  21. Runnebaum RC, Nimmanwudipong T, Block DE, Gates BC (2012) Catal. Sci Technol 2:113

    CAS  Google Scholar 

  22. Nimmanwudipong T, Aydin C, Lu J, Runnebaum R, Brodwater K, Browning N et al (2012) Catal Lett 142:1190

    Article  CAS  Google Scholar 

  23. Gonzalez-Borja MA, Resasco DE (2011) Energy Fuels 25:4155

    Article  CAS  Google Scholar 

  24. Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) J Catal 281:21

    Article  CAS  Google Scholar 

  25. Wu S-K, Lai P-C, Lin Y-C, Wan H-P, Lee H-T, Chang Y-H (2013) ACS Sustainable Chem Eng 1:349

    Article  CAS  Google Scholar 

  26. Jongerius AL, Jastrzebski R, Bruijnincx PCA, Weckhuysen BM (2012) J Catal 285:315

    Article  CAS  Google Scholar 

  27. Oyama ST, Wang X, Lee YK, Bando K, Requejo FG (2002) J Catal 210:207

    Article  CAS  Google Scholar 

  28. Sawhill SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang C, Bussell ME (2005) J Catal 231:300

    Article  CAS  Google Scholar 

  29. Liu X, Chen J, Zhang J (2008) Ind Eng Chem Res 47:5362

    Article  CAS  Google Scholar 

  30. Oyama ST (2003) J Catal 216:343

    Article  CAS  Google Scholar 

  31. Prins R, Bussell M (2012) Catal Lett 142:1413

    Article  CAS  Google Scholar 

  32. Fanchiang W-L, Lin Y-C (2012) Appl Catal A 419–420:102

    Article  Google Scholar 

  33. Koranyi TI, Vit Z, Poduval DG, Ryoo R, Kim HS, Hensen EJM (2008) J Catal 253:119

    Article  CAS  Google Scholar 

  34. Briggs D, Seah MP (1993) In: Practical structure analysis. 2nd (ed.), Wiley, Chichester.

  35. Shalvoy RB, Reucroft PJ, Davis BH (1979) J Catal 56:336

    Article  CAS  Google Scholar 

  36. Stinner C, Tang Z, Haouas M, Weber T, Prins R (2002) J Catal 208:456

    Article  CAS  Google Scholar 

  37. Alaoui El Belghiti A, Boukhari A, Holt EM (1992) J Alloy Compod 188:128

    Article  Google Scholar 

  38. Clause O, Bonneviot L, Che M (1992) J Catal 138:195

    Article  CAS  Google Scholar 

  39. Lee Y-K, Oyama ST (2006) J Catal 239:376

    Article  CAS  Google Scholar 

  40. Hadjiivanov K, Mihaylov M, Klissurski D, Stefanov P, Abadjieva N, Vassileva E et al (1999) J Catal 185:314

    Article  CAS  Google Scholar 

  41. Fang K, Ren J, Sun Y (2005) J Mol Catal A 229:51

    Article  CAS  Google Scholar 

  42. Li K, Wang R, Chen J (2011) Energy Fuels 25:854

    Article  CAS  Google Scholar 

  43. Xue M, Hu S, Chen H, Fu Y, Shen J (2011) Catal Commun 12:332

    Article  CAS  Google Scholar 

  44. Slovokhotova TA, Balandin AA, Petrov S, and Sholin AF (1963) Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science

  45. Bui VN, Toussaint G, Laurenti D, Mirodatos C, Geantet C (2009) Catal Today 143:172

    Article  CAS  Google Scholar 

  46. Oyama ST, Lee Y-K (2008) J Catal 258:393

    Article  CAS  Google Scholar 

  47. Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) J Phys Chem B 109:4575

    Article  CAS  Google Scholar 

  48. Chen J, Sun L, Wang R, Zhang J (2009) Catal Lett 133:346

    Article  CAS  Google Scholar 

  49. Halgeri AB, Prasada Rao TSR (1985) Stud Surf Sci Catal 24:667

    Article  CAS  Google Scholar 

  50. Cecilia JA, Infantes-Molina A, Rodriguez-Castellon E, Jimenez-Lppez A, Oyama ST (2013) Appl Catal B 136–137:140

    Article  Google Scholar 

  51. Filley J, Roth C (1999) J Mol Catal A 139:245

    Article  CAS  Google Scholar 

  52. Chang J, Danuthai T, Dewiyanti S, Wang C, Borgna A (2013) ChemCatChem 5:3041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council of Taiwan (Project 102-2221-E-155-060-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chuan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SK., Lai, PC. & Lin, YC. Atmospheric Hydrodeoxygenation of Guaiacol over Nickel Phosphide Catalysts: Effect of Phosphorus Composition. Catal Lett 144, 878–889 (2014). https://doi.org/10.1007/s10562-014-1231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1231-7

Keywords

Navigation