Skip to main content
Log in

Reactivity of Ultra-Thin ZnO Films Supported by Ag(111) and Cu(111): A Comparison to ZnO/Pt(111)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We studied structure and reactivity of ZnO(0001) ultrathin films grown on Ag(111) and Cu(111) single crystal surfaces. Structural characterization was carried out by scanning tunneling microscopy, Auger electron spectroscopy, low-energy electron diffraction, and temperature programmed desorption. The CO oxidation behavior of the films was studied at low temperature (450 K) at near atmospheric pressures using gas chromatography. For ZnO/Cu(111), it is shown that under reaction conditions ZnO readily migrates into the Cu crystal bulk, and the reactivity is governed by a CuOx oxide film formed in the reaction ambient. In contrast, the planar structure of ZnO films on Ag(111) is maintained, similarly to the previously studied ZnO films on Pt(111). At sub-monolayer coverages, the “inverse” model catalysts are represented by two-monolayer-thick ZnO(0001) islands on Pt(111) and Ag(111) supports. While the CO oxidation rate is considerably increased on ZnO/Pt(111), which is attributed to active sites at the metal/oxide boundary, sub-monolayer ZnO films on Ag(111) did not show such an effect, and the reactivity was inhibited with increasing film coverage. The results are explained by much stronger adsorption of CO on Pt(111) as compared with Ag(111) in proximity to O species at the oxide/metal boundary. In addition, the water–gas shift and reverse water–gas shift reactions were examined on ZnO/Ag(111), which revealed no promotional effect of ZnO on the reactivity of Ag under the conditions studied. The latter finding suggests that wetting phenomena of ZnO on metals does not play a crucial role in the catalytic performance of ZnO-based real catalysts in those reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Freund H-J, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242

    Article  CAS  Google Scholar 

  2. Shaikhutdinov S, Freund H-J (2012) Ultrathin oxide films on metal supports: structure-reactivity relations. Annu Rev Phys Chem 63(1):619–633

    Article  CAS  Google Scholar 

  3. Giordano L, Pacchioni G (2011) Oxide films at the nanoscale: new structures, new functions, and new materials. Acc Chem Res 44(11):1244–1252

    Article  CAS  Google Scholar 

  4. Netzer FP, Allegretti F, Surnev S (2010) Low-dimensional oxide nanostructures on metals: hybrid systems with novel properties. J Vac Sci Tec B: Microelectron Nanometer Struct 28(1):1–16

    Article  CAS  Google Scholar 

  5. Lundgren E et al (2006) Surface oxides on close-packed surfaces of late transition metals. J Phys: Condens Matter 18(30):R481

    CAS  Google Scholar 

  6. Over H et al (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287(5457):1474–1476

    Article  CAS  Google Scholar 

  7. Martynova Y et al (2012) Low temperature CO oxidation on Ruthenium oxide thin films at near-atmospheric pressures. Catal Lett 142(6):657–663

    Article  CAS  Google Scholar 

  8. Over H (2012) Surface chemistry of Ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chem Rev 112(6):3356–3426

    Article  CAS  Google Scholar 

  9. Martynova, Y., et al., (2013) CO oxidation over monolayer manganese oxide films on Pt(111). Catalysis Letters, in press

  10. Sun YN et al (2009) Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J Catal 266(2):359–368

    Article  CAS  Google Scholar 

  11. Martynova Y, Shaikhutdinov S, Freund H-J (2013) CO Oxidation on metal-supported ultrathin oxide films: what makes them active? Chemcatchem 5(8):2162–2166

    Article  CAS  Google Scholar 

  12. Lewandowski M et al (2011) Promotional effect of metal encapsulation on reactivity of iron oxide supported Pt catalysts. Appl Catal A Gen 391(1–2):407–410

    Article  CAS  Google Scholar 

  13. Martynova Y et al (2013) CO oxidation over ZnO films on Pt(111) at near-atmospheric pressures. J Catal 301:227–232

    Article  CAS  Google Scholar 

  14. Hayek K et al (2000) Surface reactions on inverse model catalysts: CO adsorption and CO hydrogenation on vanadia- and ceria-modified surfaces of rhodium and palladium. Top Catal 14(1–4):25–33

    Article  CAS  Google Scholar 

  15. Schoiswohl J et al (2005) Vanadium oxide nanostructures on Rh(111): promotion effect of CO adsorption and oxidation. Surf Sci 580(1–3):122–136

    Article  CAS  Google Scholar 

  16. Behrens M et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336(6083):893–897

    Article  CAS  Google Scholar 

  17. Grunwaldt JD et al (2000) In Situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194(2):452–460

    Article  CAS  Google Scholar 

  18. Kanai Y et al (1994) Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst. Catal Lett 27(1–2):67–78

    Article  CAS  Google Scholar 

  19. Naumann d’Alnoncourt R et al (2006) The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. Phys Chem Chem Phys 8(13):1525–1538

    Article  Google Scholar 

  20. Kourouklis HN, Nix RM (1994) The growth and structure of ZnOx overlayers on low index silver surfaces. Surf Sci 318(1–2):104–114

    Article  CAS  Google Scholar 

  21. Tusche C, Meyerheim HL, Kirschner J (2007) Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys Rev Lett 99(2):026102

    Article  CAS  Google Scholar 

  22. Claeyssens F et al (2005) Growth of ZnO thin films-experiment and theory. J Mater Chem 15(1):139–148

    Article  CAS  Google Scholar 

  23. Sano M et al (2002) Oxidation of a Zn-deposited Cu(111) surface studied by XPS and STM. Surf Sci 514(1–3):261–266

    Article  CAS  Google Scholar 

  24. Thomsen EV, Christiansen M, Onsgaard J (1992) The growth of Zn and ZnOx on Cu(111). Appl Surf Sci 62(3):189–194

    Article  CAS  Google Scholar 

  25. Onsgaard J, Bjorn JA (1993) Growth and reactivity of ZnOx on Cu(111). J Vac Sci Technol, A 11(4):2179–2185

    Article  CAS  Google Scholar 

  26. Fu SS, Somorjai GA (1992) A comparative study of zinc oxide overlayers on copper (311), Cu(110), and a high defect concentration Cu(111). Langmuir 8(2):518–524

    Article  CAS  Google Scholar 

  27. Campbell CT, Daube KA, White JM (1987) Cu/ZnO(0001) and ZnOx/Cu(111): model catalysts for methanol synthesis. Surf Sci 182(3):458–476

    Article  CAS  Google Scholar 

  28. McBriarty, M.E., et al., Surface structure of ZnO films on Ag(111). in preparation

  29. Steurer W et al (2012) Scanning tunneling microscopy imaging of NiO(100) islands embedded in Ag(100). Surf Sci 606(9–10):803–807

    Article  CAS  Google Scholar 

  30. Campbell CT (1985) Atomic and molecular oxygen adsorption on Ag(111). Surf Sci 157(1):43–60

    Article  CAS  Google Scholar 

  31. Hansen W, Bertolo M, Jacobi K (1991) Physisorption of CO on Ag(111): investigation of the monolayer and the multilayer through HREELS, ARUPS, and TDS. Surf Sci 253(1–3):1–12

    Article  CAS  Google Scholar 

  32. Liu, B.H., S. Shaikhutdinov, and H.J. Freund, Growth of crystalline ZnO films on Cu(111). in preparation

  33. Jensen F et al (1991) Oxidation of Cu(111): two new oxygen induced reconstructions. Surface Science Letters 259(3):L774–L780

    Article  CAS  Google Scholar 

  34. Sun D et al (2012) Theoretical study of the role of a metal-cation ensemble at the oxide-metal boundary on CO oxidation. J Phys Chem C 116(13):7491–7498

    Article  CAS  Google Scholar 

  35. Weirum G et al (2010) Growth and surface structure of Zinc oxide layers on a Pd(111) surface. J Phys Chem C 114(36):15432–15439

    Article  CAS  Google Scholar 

  36. Schott V et al (2013) Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO. Angew Chem Int Ed 52(45):11925–11929

    Article  CAS  Google Scholar 

  37. Deng X et al (2013) Growth of single- and bilayer ZnO on Au(111) and interaction with Copper. J Phys Chem C 117(21):11211–11218

    Article  CAS  Google Scholar 

  38. Doyle AM, Shaikhutdinov SK, Freund HJ (2004) Alkene chemistry on the palladium surface: nanoparticles vs single crystals. J Catal 223(2):444–453

    Article  CAS  Google Scholar 

  39. Steininger H, Lehwald S, Ibach H (1982) On the adsorption of CO on Pt(111). Surf Sci 123(2–3):264–282

    Article  CAS  Google Scholar 

  40. Steininger H, Lehwald S, Ibach H (1982) Adsorption of oxygen on Pt(111). Surf Sci 123(1):1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by Fonds der Chemischen Industrie, Deutsche Forschungsgemeinschaft, and Cluster of Excellence “UniCat”, in particular through the Northwestern University – CoE “UniCat” collaboration. BHL acknowledges the International Max Planck Research School “Complex surfaces in materials science”. MEM was a Fulbright Grantee in the Graduate Fellow Student Program 2011–2012. MEM and MJB were supported in part by US Department of Energy Grant No. DE-FG02-03ER15457. IMNG thanks the Alexander von Humboldt Foundation for a fellowship. The FHI team acknowledges the support from the COST Action CM1104 “Reducible oxide chemistry, structure and functions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shaikhutdinov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Q., Liu, B.H., McBriarty, M.E. et al. Reactivity of Ultra-Thin ZnO Films Supported by Ag(111) and Cu(111): A Comparison to ZnO/Pt(111). Catal Lett 144, 648–655 (2014). https://doi.org/10.1007/s10562-014-1191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1191-y

Keywords

Navigation