Skip to main content

Advertisement

Log in

Evaluation of the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on human umbilical cord CD146+ stem cells and stem cell-based decellularized matrix

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

This study aims to evaluate the CD146+ stem cells obtained from the human umbilical cord and their extracellular matrix proteins on in vitro Pseudomonas aeruginosa and Staphylococcus aureus biofilms to understand their possible antimicrobial activity. CD146+ stem cells were determined according to cell surface markers and differentiation capacity. Characterization of the decellularized matrix was done with DAPI, Masson’s Trichrome staining and proteome analysis. Cell viability/proliferation of cells in co-cultures was evaluated by WST-1 and crystal-violet staining. The effects of cells and decellularized matrix proteins on biofilms were investigated on a drip flow biofilm reactor and their effects on gene expression were determined by RT-qPCR. We observed that CD146/105+ stem cells could differentiate adipogenically and decellularized matrix showed negative DAPI and positive collagen staining with Masson’ s Trichrome. Proteome analysis of the decellularized matrix revealed some matrix components and growth factors. Although the decellularized matrix significantly reduced the cell counts of P. aeruginosa, no significant difference was observed for S. aureus cells in both groups. Supporting data was obtained from the gene expression results of P. aeruginosa with the significant down-regulation of rhlR and lasR. For S. aureus, icaADBC genes were significantly up-regulated when grown on the decellularized matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed S, Meghji S, Williams RJ, Henderson B, Brock JH, Nair SP (2001) Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect Immun 69:2872–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcayaga-Miranda F, Cuenca J, Khoury M (2017) Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol 8:339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arhin A, Boucher C (2010) The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology 156:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Avery D, Govindaraju P, Jacob M, Todd L, Monslow J, Pure E (2018) Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biol 67:90–106

    Article  CAS  PubMed  Google Scholar 

  • Avolio E, Alvino VV, Ghorbel MT, Campagnolo P (2017) Perivascular cells and tissue engineering: current applications and untapped potential. Pharmacol Ther 171:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bala M, Ray K, Gupta SM (2005) Comparison of disc diffusion results with minimum inhibitory concentration (MIC) values for antimicrobial susceptibility testing of Neisseria gonorrhoeae. Indian J Med Res 122:48–51

    CAS  PubMed  Google Scholar 

  • Beaudoin Cloutier C, Goyer B, Perron C, Guignard R, Larouche D, Moulin VJ, Germain L, Gauvin R, Auger FA (2017) In vivo evaluation and imaging of a bilayered self-assembled skin substitute using a decellularized dermal matrix grafted on mice. Tissue Eng Part A 23:313–322

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF (2006) Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng 12:2949–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown LA, Sava P, Garcia C, Gonzalez AL (2015) Proteomic analysis of the pericyte derived extracellular matrix. Cell Mol Bioeng 8:349–363

    Article  CAS  Google Scholar 

  • Celebi B, Elcin AE, Elcin YM (2010) Proteome analysis of rat bone marrow mesenchymal stem cell differentiation. J Proteome Res 9:5217–5227

    Article  CAS  PubMed  Google Scholar 

  • Celebi-Saltik B (2018) Pericytes in tissue engineering. Adv Exp Med Biol 1109:125–137

    Article  CAS  PubMed  Google Scholar 

  • Corselli M, Chen CW, Crisan M, Lazzari L, Peault B (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30:1104–1109

    Article  CAS  PubMed  Google Scholar 

  • Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294:C675–C682

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Chai Y, Yu Y (2019) Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A 107:1849–1859

    Article  CAS  PubMed  Google Scholar 

  • Davis GE, Bayless KJ, Davis MJ, Meininger GA (2000) Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol 156:1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deering TF, Chang C, Snyder C, Natarajan SK, Matheny R (2017) Enhanced antimicrobial effects of decellularized extracellular matrix (CorMatrix) with added vancomycin and gentamicin for device implant protection. Pacing Clin Electrophysiol 40:615–623

    Article  PubMed  Google Scholar 

  • El Masry MS, Chaffee S, Das Ghatak P, Mathew-Steiner SS, Das A, Higuita-Castro N, Roy S, Anani RA, Sen CK (2019) Stabilized collagen matrix dressing improves wound macrophage function and epithelialization. FASEB J 33:2144–2155

    Article  PubMed  Google Scholar 

  • Ennis J, Sarugaser R, Gomez A, Baksh D, Davies JE (2008) Isolation, characterization, and differentiation of human umbilical cord perivascular cells (HUCPVCs). Methods Cell Biol 86:121–136

    Article  CAS  PubMed  Google Scholar 

  • Flock JI (1999) Extracellular-matrix-binding proteins as targets for the prevention of Staphylococcus aureus infections. Mol Med Today 5:532–537

    Article  CAS  PubMed  Google Scholar 

  • Fuoco C, Sangalli E, Vono R, Testa S, Sacchetti B, Latronico MV, Bernardini S, Madeddu P, Cesareni G, Seliktar D et al (2014) 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol 5:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlan RM (2005) Statistical assessment of a laboratory method for growing biofilms. Microbiology 151:757–762

    Article  CAS  PubMed  Google Scholar 

  • Goeres DM, Hamilton MA, Beck NA, Buckingham-Meyer K, Hilyard JD, Loetterle LR, Lorenz LA, Walker DK, Stewart PS (2009) A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat Protoc 4:783–788

    Article  CAS  PubMed  Google Scholar 

  • Gokcinar-Yagci B, Uckan-Cetinkaya D, Celebi-Saltik B (2015) Pericytes: properties, functions and applications in tissue engineering. Stem Cell Rev Rep 11:549–559

    Article  CAS  PubMed  Google Scholar 

  • Gokcinar-Yagci B, Ozyuncu O, Celebi-Saltik B (2016) Isolation, characterisation and comparative analysis of human umbilical cord vein perivascular cells and cord blood mesenchymal stem cells. Cell Tissue Bank 17:345–352

    Article  CAS  PubMed  Google Scholar 

  • Gokcinar-Yagci B, Yersal N, Korkusuz P, Celebi-Saltik B (2018) Generation of human umbilical cord vein CD146+ perivascular cell origined three-dimensional vascular construct. Microvasc Res 118:101–112

    Article  CAS  PubMed  Google Scholar 

  • Golovkine G, Reboud E, Huber P (2018) Corrigendum: Pseudomonas aeruginosa takes a multi-target approach to achieve junction breach. Front Cell Infect Microbiol 8:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood-Goodwin M, Yang J, Hassanipour M, Larocca D (2016) A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Sci Rep 6:24403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman RM, Yang S, He MK, Van de Walle GR (2017) Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 8:157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hauck CR, Ohlsen K (2006) Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 9:5–11

    Article  CAS  PubMed  Google Scholar 

  • Herman-Bausier P, Valotteau C, Pietrocola G, Rindi S, Alsteens D, Foster TJ, Speziale P, Dufrene YF (2016) Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein Cna. MBio 7(5):e01529. https://doi.org/10.1128/mBio.01529-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocking AM (2012) Mesenchymal stem cell therapy for cutaneous wounds. Adv Wound Care (New Rochelle) 1:166–171

    Article  Google Scholar 

  • Holderbaum D, Spech T, Ehrhart LA, Keys T, Hall GS (1987) Collagen binding in clinical isolates of Staphylococcus aureus. J Clin Microbiol 25:2258–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isakson M, de Blacam C, Whelan D, McArdle A, Clover AJ (2015) Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem Cells Int 2015:831095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    Article  PubMed  Google Scholar 

  • Liu MH, Wu XX, Li JK, Liu L, Zhang RG, Shao DY, Du XD (2017) The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control 73:613–618

    Article  CAS  Google Scholar 

  • Lopes JD, dos Reis M, Brentani RR (1985) Presence of laminin receptors in Staphylococcus aureus. Science 229:275–277

    Article  CAS  PubMed  Google Scholar 

  • Martin-Piedra MA, Alfonso-Rodriguez CA, Zapater A, Durand-Herrera D, Chato-Astrain J, Campos F, Sanchez-Quevedo MC, Alaminos M, Garzon I (2019) Effective use of mesenchymal stem cells in human skin substitutes generated by tissue engineering. Eur Cell Mater 37:233–249

    Article  CAS  PubMed  Google Scholar 

  • Millan-Rivero JE, Martinez CM, Romecin PA, Aznar-Cervantes SD, Carpes-Ruiz M, Cenis JL, Moraleda JM, Atucha NM, Garcia-Bernal D (2019) Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res Ther 10:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed N, Teeters MA, Patti JM, Hook M, Ross JM (1999) Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions. Infect Immun 67:589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montemurro T, Andriolo G, Montelatici E, Weissmann G, Crisan M, Colnaghi MR, Rebulla P, Mosca F, Peault B, Lazzari L (2011) Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. J Cell Mol Med 15:796–808

    Article  CAS  PubMed  Google Scholar 

  • Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Peault B (2014) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 71:1353–1374

    Article  CAS  PubMed  Google Scholar 

  • Ohbayashi T, Irie A, Murakami Y, Nowak M, Potempa J, Nishimura Y, Shinohara M, Imamura T (2011) Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 157:786–792

    Article  CAS  PubMed  Google Scholar 

  • Patti JM, House-Pompeo K, Boles JO, Garza N, Gurusiddappa S, Hook M (1995) Critical residues in the ligand-binding site of the Staphylococcus aureus collagen-binding adhesin (MSCRAMM). J Biol Chem 270:12005–12011

    Article  CAS  PubMed  Google Scholar 

  • Polat AN, Karayel O, Giese SH, Harmanda B, Sanal E, Hu CK, Renard BY, Ozlu N (2015) Phosphoproteomic analysis of aurora kinase inhibition in monopolar cytokinesis. J Proteome Res 14:4087–4098

    Article  CAS  PubMed  Google Scholar 

  • Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209:1219–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu L, She P, Wang Y, Liu F, Zhang D, Chen L, Luo Z, Xu H, Qi Y, Wu Y (2016) Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen 5:402–412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raja RH, Raucci G, Hook M (1990) Peptide analogs to a fibronectin receptor inhibit attachment of Staphylococcus aureus to fibronectin-containing substrates. Infect Immun 58:2593–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumari J, Borkotoky S, Reddy D, Mohanty SK, Kumavath R, Murali A, Suchiang K, Busi S (2019) Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: insights from in vitro, in vivo and in silico studies. Microbiol Res 226:19–26

    Article  CAS  PubMed  Google Scholar 

  • Rana D, Zreiqat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M (2017) Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 11:942–965

    Article  CAS  PubMed  Google Scholar 

  • Roger P, Puchelle E, Bajolet-Laudinat O, Tournier JM, Debordeaux C, Plotkowski MC, Cohen JH, Sheppard D, de Bentzmann S (1999) Fibronectin and alpha5beta1 integrin mediate binding of Pseudomonas aeruginosa to repairing airway epithelium. Eur Respir J 13:1301–1309

    CAS  PubMed  Google Scholar 

  • Sarikaya A, Record R, Wu CC, Tullius B, Badylak S, Ladisch M (2002) Antimicrobial activity associated with extracellular matrices. Tissue Eng 8:63–71

    Article  PubMed  Google Scholar 

  • Senyurek I, Klein G, Kalbacher H, Deeg M, Schittek B (2010) Peptides derived from the human laminin alpha4 and alpha5 chains exhibit antimicrobial activity. Peptides 31:1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Siryaporn A, Kuchma SL, O’Toole GA, Gitai Z (2014) Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci USA 111:16860–16865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YC, Halang P, Fleury C, Jalalvand F, Morgelin M, Riesbeck K (2017) Haemophilus protein F orthologs of pathogens infecting the airways: exploiting host laminin at heparin-binding sites for maximal adherence to epithelial cells. J Infect Dis 216:1303–1307

    Article  CAS  PubMed  Google Scholar 

  • Suhaeri M, Noh MH, Moon JH, Kim IG, Oh SJ, Ha SS, Lee JH, Park K (2018) Novel skin patch combining human fibroblast-derived matrix and ciprofloxacin for infected wound healing. Theranostics 8:5025–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symersky J, Patti JM, Carson M, House-Pompeo K, Teale M, Moore D, Jin L, Schneider A, DeLucas LJ, Hook M et al (1997) Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat Struct Biol 4:833–838

    Article  CAS  PubMed  Google Scholar 

  • Trafny EA, Kowalska K, Grzybowski J (1998) Adhesion of Pseudomonas aeruginosa to collagen biomaterials: effect of amikacin and ciprofloxacin on the colonization and survival of the adherent organisms. J Biomed Mater Res 41:593–599

    Article  CAS  PubMed  Google Scholar 

  • Tsang KW, Shum DK, Chan S, Ng P, Mak J, Leung R, Shum IH, Ooi GC, Tipoe GL, Lam WK (2003) Pseudomonas aeruginosa adherence to human basement membrane collagen in vitro. Eur Respir J 21:932–938

    Article  CAS  PubMed  Google Scholar 

  • Tsang WP, Shu Y, Kwok PL, Zhang F, Lee KK, Tang MK, Li G, Chan KM, Chan WY, Wan C (2013) CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration. PLoS ONE 8:e76153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama A, Motegi SI, Sekiguchi A, Fujiwara C, Perera B, Ogino S, Yokoyama Y, Ishikawa O (2017) Mesenchymal stem cells-derived MFG-E8 accelerates diabetic cutaneous wound healing. J Dermatol Sci 86:187–197

    Article  CAS  PubMed  Google Scholar 

  • Vezzani B, Pierantozzi E, Sorrentino V (2016) Not all pericytes are born equal: pericytes from human adult tissues present different differentiation properties. Stem Cells Dev 25:1549–1558

    Article  PubMed  Google Scholar 

  • Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18:E789. https://doi.org/10.3390/ijms18040789.

    Article  PubMed  Google Scholar 

  • Wang L, Dong M, Zheng J, Song Q, Yin W, Li J, Niu W (2011) Relationship of biofilm formation and gelE gene expression in Enterococcus faecalis recovered from root canals in patients requiring endodontic retreatment. J Endod 37:631–636

    Article  CAS  PubMed  Google Scholar 

  • Ward CL, Sanchez CJ Jr, Pollot BE, Romano DR, Hardy SK, Becerra SC, Rathbone CR, Wenke JC (2015) Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol 15:75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu Y, Alkhawaji A, Ding Y, Mei J (2016) Decellularized scaffolds in regenerative medicine. Oncotarget 7:58671–58683

    Article  PubMed  PubMed Central  Google Scholar 

  • Zebardast N, Lickorish D, Davies JE (2010) Human umbilical cord perivascular cells (HUCPVC): a mesenchymal cell source for dermal wound healing. Organogenesis 6:197–203

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Koc University Research Center for Translational Medicine.

Funding

This work was supported by Hacettepe University, Scientific Research Project Coordination Unit, Grant Number: TYL-2019-17802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betül Çelebi-Saltik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

In this study, umbilical cord samples were obtained immediately after delivery from non-complicated pregnant women in Hacettepe University Faculty of Medicine, Department of Obstetrics and Gynecology. Hacettepe University Local Non-Interventional Clinical Researches Ethics Committee approved human material use (GO18/446-22) for this in vitro study.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. Suppl. 1

Antibacterial activity of decellularized extracellular matrix. Decellularized extracellular matrix in cell culture flasks (A), Disk-shaped pieces of decellularized extracellular matrix cut by using a sterile punch (B) No inhibition zones were observed both for S. aureus (left side) and P. aeruginosa (right side) (C, n = 4) (TIFF 1145 kb)

Supplementary material 2 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çankirili, N.K., Kart, D. & Çelebi-Saltik, B. Evaluation of the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on human umbilical cord CD146+ stem cells and stem cell-based decellularized matrix. Cell Tissue Bank 21, 215–231 (2020). https://doi.org/10.1007/s10561-020-09815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09815-6

Keywords

Navigation