Skip to main content

Advertisement

Log in

Defined serum- and xeno-free cryopreservation of mesenchymal stem cells

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

A Correction to this article was published on 05 April 2019

This article has been updated

Abstract

Mesenchymal stem cells (MSCs) have vast potential in cell therapy, and are experimentally used in the clinic. Therefore, it is critical to find a serum- and xeno-free cryopreservation method. The aim of this study was to compare two serum- and xeno-free cryoprotectants for MSCs. Adipose tissue MSCs (Ad-MSCs) and bone marrow MSCs (BM-MSCs) were cryopreserved in two cryoprotectants: the defined serum- and xeno-free STEM-CELLBANKER™ (CB) and 10 % dimethyl sulfoxide (DMSO) in a xeno-free serum replacement cell culture medium and compared to non-cryopreserved MSCs. MSCs cryopreserved in CB or DMSO had similar morphology and surface marker expression compared to their respective non-cryopreserved MSC. Ad-MSCs and BM-MSC in both cryoprotectant media exhibited reduced mean fluorescence intensity (MFI) for CD105, BM-MSCs for CD73 and Ad-MSC increased MFI for HLA class I compared to non-cryopreserved MSCs. Population doubling time of CB cryopreserved and non-cryopreserved Ad-MSCs was similar (38.1 ± 13.6 and 36.8 ± 12.1 h), but somewhat higher when cryopreserved in DMSO (42.2 ± 10.8 h). BM-MSCs had higher population doubling time (CB 47.7 ± 11.4 and DMSO 62.3 ± 32.9 h respectively, p < 0.05) compared to Ad-MSCs. The viability of Ad-MSCs was significantly higher after cryopreservation in CB compared to DMSO (90.4 ± 4.5 % vs. 79.9 ± 3.8 % respectively). Ad-MSCs and BM-MSCs retained their mesodermal differentiation potential when cryopreserved in both cryoprotectants. The characteristics of Ad-MSCs post-thawing are better preserved by CB than by DMSO in serum- and xeno-free medium. Furthermore, Ad-MSCs and BM-MSCs are differently affected by the cryoprotectants, which may have implications for cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 05 April 2019

    In the original article, Fig.��1A was by mistakenly duplicated. The corrected image is provided in this correction article.

  • 05 April 2019

    In the original article, Fig.��1A was by mistakenly duplicated. The corrected image is provided in this correction article.

Abbreviations

MSCs:

Mesenchymal stem cells

Ad-MSCs:

Adipose tissue-derived MSCs

CB:

STEM-CELLBANKER™

DMSO:

Dimethyl sulfoxide

BM-MSCs:

Bone marrow-derived MSCs

HBSS:

Hanks balanced salt solution

PBS:

Phosphate-buffered saline

LDA:

Live/dead assay

PI:

Propidium iodide

PDT:

Population doubling time

DMEM-HG:

Dulbecco’s modified eagles medium-high glucose

FBS:

Fetal bovine serum

IBMX:

Isobutyl-1-methylxanthine

References

  • Al-Saqi SH, Saliem M, Asikainen S, Quezada HC, Hovatta O, Le Blanc K et al (2014) Defined serum-free medium for in vitro expansion of adipose derived mesenchymal stem cells. Cytotherapy. doi:10.1016/j.jcyt.2014.02.006

    PubMed  Google Scholar 

  • Basu J, Genheimer CW, Guthrie KI, Sangha N, Quinlan SF, Bruce AT et al (2011) Expansion of the human adipose-derived stromal vascular cell fraction yields a population of smooth muscle-like cells with markedly distinct phenotypic and functional properties relative to mesenchymal stem cells. Tissue Eng Part C Methods 17(8):843–860 Epub 2011/05/21

    Article  CAS  PubMed  Google Scholar 

  • Bray LJ, Heazlewood CF, Atkinson K, Hutmacher DW, Harkin DG (2012) Evaluation of methods for cultivating limbal mesenchymal stromal cells. Cytotherapy 14(8):936–947 Epub 2012/05/17

  • Campioni D, Lanza F, Moretti S, Ferrari L, Cuneo A (2008) Loss of Thy-1 (CD90) antigen expression on mesenchymal stromal cells from hematologic malignancies is induced by in vitro angiogenic stimuli and is associated with peculiar functional and phenotypic characteristics. Cytotherapy 10(1):69–82 Epub 2008/01/19

    Article  CAS  PubMed  Google Scholar 

  • Casteilla L, Planat-Benard V, Laharrague P, Cousin B (2011) Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells 3(4):25–33 Epub 2011/05/25

    Article  PubMed Central  PubMed  Google Scholar 

  • de Lima Prata K, de Santis GC, Orellana MD, Palma PV, Brassesco MS, Covas DT (2012) Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions. Cytotherapy 14(6):694–700 Epub 2012/04/24

    Article  CAS  PubMed  Google Scholar 

  • Dicker A, Le Blanc K, Astrom G, van Harmelen V, Gotherstrom C, Blomqvist L et al (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308(2):283–290 Epub 2005/06/01

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317 Epub 2006/08/23

    Article  CAS  PubMed  Google Scholar 

  • Ginis I, Grinblat B, Shirvan MH (2012) Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods 18(6):453–463 Epub 2011/12/27

    Article  CAS  PubMed  Google Scholar 

  • Halvorsen YD, Bond A, Sen A, Franklin DM, Lea-Currie YR, Sujkowski D et al (2001) Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism 50(4):407–413 Epub 2001/04/05

    Article  CAS  PubMed  Google Scholar 

  • Holm F, Strom S, Inzunza J, Baker D, Stromberg AM, Rozell B et al (2010) An effective serum- and xeno-free chemically defined freezing procedure for human embryonic and induced pluripotent stem cells. Hum Reprod 25(5):1271–1279 Epub 2010/03/09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F et al (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13(6):675–685 Epub 2011/01/15

    Article  CAS  PubMed  Google Scholar 

  • Janz Fde L, Debes Ade A, Cavaglieri Rde C, Duarte SA, Romao CM, Moron AF, et al (2012) Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol 2012:649353. Epub 2012/06/06

  • Kim WS, Park BS, Sung JH (2009) Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res 301(5):329–336 Epub 2009/04/28

    Article  PubMed  Google Scholar 

  • Le Blanc K (2006) Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 8(6):559–561 Epub 2006/12/07

    Article  PubMed  Google Scholar 

  • Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20 Epub 2003/01/25

    Article  PubMed  Google Scholar 

  • Lin YT, Chern Y, Shen CK, Wen HL, Chang YC, Li H et al (2011) Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington’s disease mouse models. PLoS ONE 6(8):e22924 Epub 2011/08/19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin RZ, Moreno-Luna R, Zhou B, Pu WT, Melero-Martin JM (2012) Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis 15(3):443–455 Epub 2012/04/25

    Article  PubMed Central  PubMed  Google Scholar 

  • Miwa H, Hashimoto Y, Tensho K, Wakitani S, Takagi M (2012) Xeno-free proliferation of human bone marrow mesenchymal stem cells. Cytotechnology 64(3):301–308. doi:10.1007/s10616-011-9400-7

  • Motta JPR, Paraguassú-Braga FH, Bouzas LF, Porto LC (2014) Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology 68(3):343–348. doi:10.1016/j.cryobiol.2014.04.007

  • Naaldjik Y, Staude M, Federova V, Stolzing A (2012) Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol 12(1):49 Epub 2012/08/15

    Article  Google Scholar 

  • Pal R, Hanwate M, Jan M, Totey S (2009) Phenotypic and functional comparison of optimum culture conditions for upscaling of bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 3(3):163–174 Epub 2009/02/21

    Article  CAS  PubMed  Google Scholar 

  • Pegg DE (2007) Principles of cryopreservation. Methods Mol Biol 368:39–57 Epub 2007/12/18

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Ding D, Salvi RJ (2008) Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res 236(1–2):52–60 Epub 2008/01/22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saliem M, Holm F, Bergström Tengzelius R, Jorns C, Nilsson L-M, Ericzon B-G et al (2012) Improved cryopreservation of human hepatocytes using a new xeno free cryoprotectant solution. World J Hepatol 4(5):176

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos NC, Figueira-Coelho J, Saldanha C, Martins-Silva J (2002) Biochemical, biophysical and haemorheological effects of dimethylsulphoxide on human erythrocyte calcium loading. Cell Calcium 31(4):183–188 Epub 2002/05/25

    Article  CAS  PubMed  Google Scholar 

  • Stiff PJ, Koester AR, Weidner MK, Dvorak K, Fisher RI (1987) Autologous bone marrow transplantation using unfractionated cells cryopreserved in dimethylsulfoxide and hydroxyethyl starch without controlled-rate freezing. Blood 70(4):974–978 Epub 1987/10/01

    CAS  PubMed  Google Scholar 

  • Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE et al (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54(3):132–141 Epub 2005/10/21

    Article  CAS  PubMed  Google Scholar 

  • Witkowska-Zimny M, Walenko K (2011) Stem cells from adipose tissue. Cell Mol Biol Lett 16(2):236–257 Epub 2011/03/12

    Article  PubMed  Google Scholar 

  • Zeisberger SM, Schulz JC, Mairhofer M, Ponsaerts P, Wouters G, Doerr D et al (2011) Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells. Cell Transpl 20(8):1241–1257 Epub 2010/12/24

    Article  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228 Epub 2001/04/17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by Karolinska Institutet foundation. We thank ZENOAQ for supplying the CB and CELLOTION media.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahla Hamza Al-Saqi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Saqi, S.H., Saliem, M., Quezada, H.C. et al. Defined serum- and xeno-free cryopreservation of mesenchymal stem cells. Cell Tissue Bank 16, 181–193 (2015). https://doi.org/10.1007/s10561-014-9463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-014-9463-8

Keywords

Navigation