Skip to main content
Log in

Oxidized Low Density Lipoproteins-Do We Know Enough About Them?

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Since the discovery of oxidized low density lipoprotein (Ox-LDL), over 5,000 articles have appeared on the topic with over 400 articles appearing every year during the past decade. LDL contains esterified polyunsaturated fatty acid containing lipids, such as, phosphatidylcholine (PtdCho) and cholesterol esters (CE). Peroxidation of polyunsaturated fatty acid (PUFA) containing lipids has been known for a long time. Numerous studies have documented that peroxidized lipids as well as products derived from their decomposition, particularly aldehydes, have deleterious biological properties. This concept has been exemplified in the study of atherosclerosis. A plethora of in vitro and animal studies, as well as human epidemiological and correlatory studies, have supported the notion that oxidative processes and the formation of Ox-LDL might contribute to atherosclerosis. Yet the negative outcomes of human clinical trials with α-tocopherol and other antioxidants have convinced even staunch supporters of the hypothesis to take a step backwards and reconsider reasons of their failure and suggest alternative approaches. Ox-LDL is a complex mixture of numerous chemical entities, many of them are yet uncharacterized. Why and how it is formed or its nature in vivo is poorly understood. It is recognized by numerous cell surface receptors, which are ubiquitously expressed in many different cell types. These receptors might perform a variety of functions. In addition, components of Ox-LDL might also have favorable effects that are difficult to dissociate from its pathological effects. In this review, the nature of Ox-LDL and potential problems in inhibiting its formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

4-HNE:

4-hydroxy nonenal

AAPH:

2,2′-azobis(2-amidinopropane) dihydrochloride

Ac-LDL:

Acetylated low density lipoprotein

AGE:

Advanced glycation end product

AO:

Antioxidants

ApoB:

Aproprotein B100

AZA:

Azelaic acid

BARC:

Bovine aortic endothelial cell line

CE:

Cholesterol ester

Chol:

Cholesterol

CRP:

C-reactive protein

EC-LDL:

Endothelial cell modified low density lipoprotein

FO-LDL:

Fully oxidized LDL

H2O2:

Hydrogen peroxide

HDL:

High density lipoprotein

HETE:

Hydroxy eicosa tetraenoic acid

HODE:

Hydroxylinoleic acid

HPODE:

Hydroperoxylinoleic acid

LDL:

Low density lipoprotein

LOOH:

Lipid peroxides

Lyso PtdCho:

Lyso phosphatidylcholine

MDA:

Malondialdehyde

MM-LDL:

Minimally modified LDL

MPO:

Myeloperoxidase

NADPH:

Nicotinamide adenine dinucleotide phosphate

Ox-LDL:

Oxidized low density lipoprotein

Ox-Mod-LDL:

Oxidatively modified low density lipoprotein

Ox-PC:

Oxidized phosphatidyl choline

PLA2:

Phospholipase A2

PtdCho:

Phosphatidylcholine

PUFA:

Poly unsaturated fattyacid

RAGE:

Receptor for advanced glycation end product

Se:

Selinium

VCAM-1:

Vascular cell adhesion molecule-1

VLDL:

Very low density lipoprotein

β-VLDL:

Beta very low density lipoprotein

XAO:

Xanthine oxidase

Zn:

Zinc

References

  1. Steinberg D, Witztum JL. Lipoproteins and atherogenesis; current concepts. J Am Med Assoc. 1990;264:3047–52.

    Article  CAS  Google Scholar 

  2. Ross R. The pathogenesis of atherosclerosis; a perspective for the 1990s. Nature. 1993;362:801–9.

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979;76:333–7.

    Article  PubMed  CAS  Google Scholar 

  4. Brown MS, Basu SK, Falck JR, Ho YK, Goldstein JL. The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct. 1980;13:67–81.

    Article  PubMed  CAS  Google Scholar 

  5. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A. 1980;77:2214–8.

    Article  PubMed  CAS  Google Scholar 

  6. Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor mediated catabolism. Arteriosclerosis. 1987;7:135–43.

    Article  PubMed  CAS  Google Scholar 

  7. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981;78:6499–503.

    Article  PubMed  CAS  Google Scholar 

  8. Henriksen T, Mahoney EM, Steinberg D. Interactions of plasma lipoproteins with endothelial cells. Ann N Y Acad Sci. 1982;401:102–16.

    Article  PubMed  CAS  Google Scholar 

  9. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis. 1983;3:149–59.

    Article  PubMed  CAS  Google Scholar 

  10. Harris A, Devaraj S, Jialal I. Oxidative stress, alpha-tocopherol therapy, and atherosclerosis. Curr Atherosclerosis Rep. 2002;4:373–80.

    Article  Google Scholar 

  11. Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B. Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner. FEBS Lett. 2000;471:34–8.

    Article  PubMed  CAS  Google Scholar 

  12. Parthasarathy S, Barnett J. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Proc Natl Acad Sci U S A. 1990;87:9741–5.

    Article  PubMed  CAS  Google Scholar 

  13. Siess W, Zangl KJ, Essler M, Bauer M, Brandl R, Corrinth C, et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. PNAS. 1999;96:6931–6.

    Article  PubMed  CAS  Google Scholar 

  14. Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989;86:1372–6.

    Article  PubMed  CAS  Google Scholar 

  15. Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Baynes JW, et al. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochem J. 1997;322:317–25.

    PubMed  CAS  Google Scholar 

  16. Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun. 1989;6:67–75.

    Article  PubMed  CAS  Google Scholar 

  17. Parthasarathy S. Oxidation of low-density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor. Biochim Biophys Acta. 1987;917:337–40.

    PubMed  CAS  Google Scholar 

  18. Sparrow CP, Olszewski J. Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. J Lipid Res. 1993;34:219–28.

    Google Scholar 

  19. Quehenberger O, Jurgens G, Zadravec S, Esterbauer H. Oxidation of human low density lipoprotein initiated by copper (II) chloride. Basic Life Sci. 1988;49:387–90.

    PubMed  CAS  Google Scholar 

  20. Francis GA. High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences. Biochim Biophys Acta. 2000;1483:217–35.

    PubMed  CAS  Google Scholar 

  21. Spranger T, Finckh B, Fingerhut R, Kohlschutter A, Beisiegel U, Kontush A. How different constituents of human plasma and low density lipoprotein determine plasma oxidizability by copper. Chem Phys Lipids. 1998;91:39–52.

    Article  PubMed  CAS  Google Scholar 

  22. Ferguson F, Parthasarathy S, Joseph J, Kalyanaraman B. Generation and initial characterization of a novel polyclonal antibody directed against homocysteine thiolactone-modified low density lipoprotein. J Lipid Res. 1998;39:925–33.

    PubMed  CAS  Google Scholar 

  23. Arai H, Berlett BS, Chock PB, Stadman ER. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein. PNAS. 2005;102:10472–7.

    Article  PubMed  CAS  Google Scholar 

  24. Sakurai T, Kimura S, Nakano M, Kimura H. Oxidative modification of glycated low density lipoprotein in the presence of iron. Biochem Biophys Res Commun. 1991;177:433–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lynch SM, Frei B. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. J Lipid Res. 1993;34:1745–53.

    PubMed  CAS  Google Scholar 

  26. Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein Biochim. Biophys Acta. 1990;1044:275–83.

    CAS  Google Scholar 

  27. Heinecke JW. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis. 1998;141:1–15.

    Article  PubMed  CAS  Google Scholar 

  28. Rikitake Y, Kawashima S, Takeshita S, Yamashita T, Azumi H, Yasuhara M, et al. Anti-oxidative properties of fluvastatin, an HMG-CoA reductase inhibitor, contribute to prevention of atherosclerosis in cholesterol-fed rabbits. Atherosclerosis. 2001;154:87–96.

    Article  PubMed  CAS  Google Scholar 

  29. Stoll LL, McCormick ML, Denning GM, Weintraub NL. Antioxidant effects of statins. Drugs Today (Barc). 2004;40:975–90.

    Article  CAS  Google Scholar 

  30. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1990;87:5134–8.

    Article  PubMed  CAS  Google Scholar 

  31. Liao F, Berliner JA, Mehrabian M, Navab M, Demer LL, Lusis AJ, et al. Minimally modified low density lipoprotein is biologically active in vivo in mice. J Clin Investig. 1991;87:2253–7.

    Article  PubMed  CAS  Google Scholar 

  32. Parthasarathy S, Fong LG, Otero D, Steinberg D. Recognition of solubilized apoproteins from delipidated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor. Proc Natl Acad Sci U S A. 1987;84:537–40.

    Article  PubMed  CAS  Google Scholar 

  33. Fong LG, Parthasarathy S, Witztum JL, Steinberg D. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res. 1987;28:1466–77.

    PubMed  CAS  Google Scholar 

  34. Parthasarathy S. Modified lipoproteins in the pathogenesis of atherosclerosis. Austin: R.G. Landes Co; 1994. p. 152.

    Google Scholar 

  35. Lada AT, Rudel LL. Associations of low density lipoprotein particlecomposition with atherogenicity. Curr Opin Lipidol. 2004;15:19–24.

    Article  PubMed  CAS  Google Scholar 

  36. Parthasarathy S, Ragahavamenon A, Garelnabi MO, Santanam, N. Oxidized low-density lipoprotein. In: Uppu RM et al., editors. Free radicals and antioxidant protocols, methods in molecular biology. 1998. p. 403–417

  37. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320:915–24.

    Article  PubMed  CAS  Google Scholar 

  38. Moreno JJ, Mitjavila MT. The degree of unsaturation of dietary fatty acids and the development of atherosclerosis (review). J Nutr Biochem. 2003;14:182–95.

    Article  PubMed  CAS  Google Scholar 

  39. Picard S, Parthasarathy S, Fruebis J, Witztum JL. Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Proc Natl Acad Sci U S A. 1992;89:6876–80.

    Article  PubMed  CAS  Google Scholar 

  40. Giessauf A, van Wickern B, Simat T, Steinhart H, Esterbauer H. Formation of N-formylkynurenine suggests the involvement of apolipoprotein B-100 centered tryptophan radicals in the initiation of LDL lipid peroxidation. FEBS Lett. 1996;389:136–40.

    Article  PubMed  CAS  Google Scholar 

  41. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984;81:3883–7.

    Article  PubMed  CAS  Google Scholar 

  42. Shen J, Herderick E, Cornhill JF, Zsigmond E, Kim HS, Kuhn H, et al. Macrophagemediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Investig. 1996;98:2201–8.

    Article  PubMed  CAS  Google Scholar 

  43. Harats D, Shaish A, George J, Mulkins M, Kurihara H, Levkovitz H, et al. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2000;20:2100–5.

    Article  PubMed  CAS  Google Scholar 

  44. Huo Y, Zhao L, Hyman MC, Shashkin P, Harry BL, Burcin T, et al. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2004;110:2024–31.

    Article  PubMed  CAS  Google Scholar 

  45. Tribble DL, Gong EL, Leeuwenburgh C, Heinecke JW, Carlson EL, Verstuyft JG, et al. Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase. Arterioscler Thromb Vasc Biol. 1997;17:1734–40.

    Article  PubMed  CAS  Google Scholar 

  46. Patel R, Diczfalusy U, Dzeletovic S, Wilson M, Darley-Usmar V. Formation of oxysterols during oxidation of low density lipoprotein by peroxynitrite, myoglobin, and copper. J Lipid Res. 1996;37:2361–71.

    PubMed  CAS  Google Scholar 

  47. Lamb DJ, Leake DS. Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein. FEBS Lett. 1994;352:15–8.

    Article  PubMed  CAS  Google Scholar 

  48. Lamb DJ, Hider RC, Leake DS. Hydroxypyridinones and desferrioxamine inhibitmacrophage mediated LDL oxidation by iron but not by copper. Biochem Soc Trans. 1993;21:234S.

    PubMed  CAS  Google Scholar 

  49. Brennan ML, Anderson MM, Shih DM, Qu XD, Wang X, Mehta AC, et al. Increased atherosclerosis in myeloperoxidase deficient mice. J Clin Investig. 2001;107:419–30.

    Article  PubMed  CAS  Google Scholar 

  50. McMillen TS, Heinecke JW, LeBoeuf RC. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation. 2005;111:2798–804.

    Article  PubMed  CAS  Google Scholar 

  51. Santanam N, Parthasarathy S. Paradoxical actions of antioxidants in the oxidation of low density lipoprotein by peroxidases. J Clin Investig. 1995;95:2594–600.

    Article  PubMed  CAS  Google Scholar 

  52. Gieseg S, Duggan S, Gebicki JM. Peroxidation of proteins before lipids in U937 cells exposed to peroxyl radicals. Biochem J. 2000;350:215–8.

    Article  PubMed  CAS  Google Scholar 

  53. Frei B, Forte TM, Ames BN, Cross CE. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J. 1991;277:133–8.

    PubMed  CAS  Google Scholar 

  54. Bhatnagar A. Cardiovascular pathophysiology of environmental pollutants. Am J Physiol Heart Circ Physiol. 2004;286:H479–85.

    Article  PubMed  CAS  Google Scholar 

  55. Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999;13:1231–8.

    PubMed  CAS  Google Scholar 

  56. Rankin SM, Parthasarathy S, Steinberg D. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res. 1991;32:449–56.

    PubMed  CAS  Google Scholar 

  57. Damasceno NR, Sevanian A, Apolinario E, Oliveira JM, Fernandes I, Abdalla DS. Detection of electronegative low density lipoprotein (LDL) in plasma and atherosclerotic lesions by monoclonal antibody-based immunoassays. Clin Biochem. 2006;39:28–38.

    Article  PubMed  CAS  Google Scholar 

  58. Barros MR, Bertolami MC, Abdalla DS, Ferreira WP. Identification of mildly oxidized low-density lipoprotein (electronegative LDL) and its auto-antibodies IgG in children and adolescents hypercholesterolemic off springs. Atherosclerosis. 2006;184:103–7.

    Article  PubMed  CAS  Google Scholar 

  59. Chiang K, Parthasarathy S, Santanam N. Estrogen, neutrophils and oxidation. Life Sci. 2004;75:2425–38.

    Article  PubMed  CAS  Google Scholar 

  60. Hazen SL, Heinecke JW. 3-chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Investig. 1997;99:2075–81.

    Article  PubMed  CAS  Google Scholar 

  61. Meuwese MC, Stroes ES, Hazen SL, Van Miert JN, Kuivenhoven JA, Schaub RG, et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol. 2007;50:159–65.

    Article  PubMed  CAS  Google Scholar 

  62. Parastatidis I, Thomson L, Fries DM, Moore RE, Tohyama J, Fu X, et al. Increased protein nitration burden in the atherosclerotic lesions and plasma of apolipoprotein A-I deficient mice. Circ Res. 2007;107:368–76.

    Article  Google Scholar 

  63. Thukkani AK, McHowat J, Hsu FF, Brennan ML, Hazen SL, Ford DA. Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation. 2003;108:3128–33.

    Article  PubMed  CAS  Google Scholar 

  64. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158:879–91.

    Article  PubMed  CAS  Google Scholar 

  65. Bergt C, Pennathur S, Fu X, Byun J, O'Brien K, McDonald T, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A. 2004;101:13032–7.

    Article  PubMed  CAS  Google Scholar 

  66. Kumar AP, Piedrafita FJ, Reynolds WF. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the -463GA promoter polymorphism. J Biochem. 2003;279:8300–15.

    Google Scholar 

  67. Moore KP, Darley-Usmar V, Morrow J, Roberts LJ. Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ Res. 1995;77:335–41.

    PubMed  CAS  Google Scholar 

  68. Moore K, Roberts LJ. Measurement of lipid peroxidation. Free Radic Res. 1998;28:659–71.

    Article  PubMed  CAS  Google Scholar 

  69. Santanam N, Shem-Brewer R, McClatchey R, Castellano PZ, Murphy AA, Voelkel S, et al. Estradiol as an antioxidant: incompatible with its physiological concentrations and function. J Lipid Res. 1998;39:2111–8.

    PubMed  CAS  Google Scholar 

  70. Williams KJ, Fisher EA. Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care. 2005;8:139–46.

    Article  PubMed  CAS  Google Scholar 

  71. Garelnabi M, Litvinov D, Parthasarathy S. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples. N Am J Med Sci. 2010;2:397–402.

    Article  Google Scholar 

  72. Jürgens G, Lang J, Esterbauer H. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta. 1986;875:103–14.

    PubMed  Google Scholar 

  73. Jessup W, Jurgens G, Lang J, Esterbauer H, Dean RT. Interaction of 4-hydroxynonenal-modified low-density lipoproteins with the fibroblast apolipoprotein B/E receptor. Biochem J. 1986;234:245–8.

    PubMed  CAS  Google Scholar 

  74. Esterbauer H, Koller E, Slee RG, Koster JF. Possible involvement of the lipid-peroxidation product 4-hydroxynonenal in the formation of fluorescent chromolipids. Biochem J. 1986;239:405–9.

    PubMed  CAS  Google Scholar 

  75. Quehenberger O, Koller E, Jürgens G, Esterbauer H. Investigation of lipid peroxidation in human low density lipoprotein. Free Radic Res Commun. 1987;3:233–42.

    Article  PubMed  CAS  Google Scholar 

  76. Hoff HF, Whitaker TE, O'Neil J. Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition. J Biol Chem. 1992;267:602–9.

    PubMed  CAS  Google Scholar 

  77. Nadkarni DV, Sayre LM. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem Res Toxicol. 1995;8:284–91.

    Article  PubMed  CAS  Google Scholar 

  78. Tsai L, Szweda PA, Vinogradova O, Szweda LI. Structural characterization and immunochemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proc Natl Acad Sci U S A. 1998;95:7975–80.

    Article  PubMed  CAS  Google Scholar 

  79. Xu G, Liu Y, Sayre LM. Polyclonal antibodies to a fluorescent 4-hydroxy-2-nonenal (HNE)-derived lysine-lysine cross-link: characterization and application to HNE-treated protein and in vitro oxidized low-density lipoprotein. Chem Res Toxicol. 2000;13:406–13.

    Article  PubMed  CAS  Google Scholar 

  80. Marinari UM, Nitti M, Pronzato MA, Domenicotti C. Role of PKC-dependent pathways in HNEinduced cell protein transport and secretion. Mol Aspect Med. 2003;24:205–11.

    Article  CAS  Google Scholar 

  81. Awasthi Y, Sharma R, Cheng J, Yang Y, Sharma A, Singhal SS, et al. Role of 4- hydroxynonenal in stress-mediated apoptosis signaling. Mol Aspect Med. 2003;24:219–30.

    Article  CAS  Google Scholar 

  82. Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi Y. Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol. 2003;50:319–36.

    PubMed  CAS  Google Scholar 

  83. Litvinov D, Selvarajan K, Garelnabi M, Brophy L, Parthasarathy S. Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice. Atherosclerosis. 2010;209:449–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL69038 and DK056353

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampath Parthasarathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Yang, Z., Chandrakala, A.N. et al. Oxidized Low Density Lipoproteins-Do We Know Enough About Them?. Cardiovasc Drugs Ther 25, 367–377 (2011). https://doi.org/10.1007/s10557-011-6326-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6326-4

Key words

Navigation