Skip to main content

Advertisement

Log in

Potential mechanisms of tumor progression associated with postoperative infectious complications

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

There is increasing evidence that postoperative infectious complications (PICs) are associated with poor prognosis after potentially curative surgery. However, the role that PICs play in tumor development remains unclear. In this article, we reviewed the literature for novel insights on the mechanisms of cancer progression associated with PICs. The Medline and EMBASE databases were searched for publications regarding the role of suppression of antitumor immunity by PIC in tumor progression and selected 916 manuscripts were selected for this review. In addition, a summary of the authors’ own experimental data from this field was set in the context of current knowledge regarding cancer progression under septic conditions. Initially, sepsis/microbial infection dramatically activates the systemic immune system with increases in pro-inflammatory mediators, which results in the development of systemic inflammatory response syndrome; however, when sepsis persists in septic patients, a shift toward an anti-inflammatory immunosuppressive state, characterized by macrophage deactivation, reduced antigen presentation, T cell anergy, and a shift in the T helper cell pattern to a predominantly TH2-type response, occurs. Thus, various cytokine reactions and the immune status dynamically change during microbial infection, including PIC. We proposed three possible mechanisms for the tumor progression associated with PIC: first, a mechanism in which microbes and/or microbial PAMPs may be directly involved in cancer growth; second, a mechanism in which factors released from immunocompetent cells during infections may affect tumor progression; and third, a mechanism in which factors suppress host tumor immunity during infections, which may result in tumor progression. A more detailed understanding by surgeons of the immunological features in cancer patients with PIC can subsequently open new avenues for improving unfavorable long-term oncological outcomes associated with PICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nishizawa, Y., Akagi, T., Inomata, M., Katayama, H., Mizusawa, J., Yamamoto, S., Ito, M., Masaki, T., Watanabe, M., Shimada, Y., & Kitano, S. (2019). Risk factors for early postoperative complications after D3 dissection for stage II or III colon cancer: Supplementary analysis of a multicenter randomized controlled trial in Japan (JCOG0404). Annals of Gastroenterological Surgery, 3(3), 310–317.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shimada, H., Fukagawa, T., Haga, Y., & Oba, K. (2017). Does postoperative morbidity worsen the oncological outcome after radical surgery for gastrointestinal cancers? A systematic review of the literature. Annals of Gastroenterological Surgery, 1(1), 11–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yaguchi, Y., Tsujimoto, H., Kumano, I., Takahata, R., Matsumoto, Y., Yoshida, K., Horiguchi, H., Ono, S., Ichikura, T., Yamamoto, J., & Hase, K. (2012). Sentinel node navigation surgery attenuates the functional disorders in early gastric cancer. Oncology Reports, 27(3), 643–649.

    CAS  PubMed  Google Scholar 

  4. Ichikura, T., Sugasawa, H., Sakamoto, N., Yaguchi, Y., Tsujimoto, H., & Ono, S. (2009). Limited gastrectomy with dissection of sentinel node stations for early gastric cancer with negative sentinel node biopsy. Annals of Surgery, 249(6), 942–947.

    Article  PubMed  Google Scholar 

  5. Takeuchi, H., Miyata, H., Gotoh, M., Kitagawa, Y., Baba, H., Kimura, W., Tomita, N., Nakagoe, T., Shimada, M., Sugihara, K., & Mori, M. (2014). A risk model for esophagectomy using data of 5354 patients included in a Japanese nationwide web-based database. Annals of Surgery, 260(2), 259–266.

    Article  PubMed  Google Scholar 

  6. Tsujimoto, H., Ichikura, T., Ono, S., Sugasawa, H., Hiraki, S., Sakamoto, N., Yaguchi, Y., Yoshida, K., Matsumoto, Y., & Hase, K. (2009). Impact of postoperative infection on long-term survival after potentially curative resection for gastric cancer. Annals of Surgical Oncology, 16(2), 311–318.

    Article  PubMed  Google Scholar 

  7. Tsujimoto, H., Takahata, R., Nomura, S., Yaguchi, Y., Kumano, I., Matsumoto, Y., Yoshida, K., Horiguchi, H., Hiraki, S., Ono, S., Yamamoto, J., & Hase, K. (2012). Video-assisted thoracoscopic surgery for esophageal cancer attenuates postoperative systemic responses and pulmonary complications. Surgery., 151(5), 667–673.

    Article  PubMed  Google Scholar 

  8. Tsujimoto, H., Ueno, H., Hashiguchi, Y., Ono, S., Ichikura, T., & Hase, K. (2010). Postoperative infections are associated with adverse outcome after resection with curative intent for colorectal cancer. Oncology Letters, 1(1), 119–125.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sucandy, I., Attili, A., Spence, J., Bordeau, T., Ross, S., & Rosemurgy, A. (2020). The impact of body mass index on perioperative outcomes after robotic liver resection. Journal of Robotic Surgery, 14(1), 41–46.

    Article  PubMed  Google Scholar 

  10. Harimoto, N., Hoshino, H., Muranushi, R., et al. (2018). Skeletal muscle volume and intramuscular adipose tissue Are prognostic predictors of postoperative complications after hepatic resection. Anticancer Research, 38(8), 4933–4939.

    Article  PubMed  Google Scholar 

  11. Takeuchi, M., Kawakubo, H., Mayanagi, S., Yoshida, K., Fukuda, K., Nakamura, R., Suda, K., Wada, N., Takeuchi, H., & Kitagawa, Y. (2018). Postoperative pneumonia is associated with long-term oncologic outcomes of definitive Chemoradiotherapy followed by salvage Esophagectomy for esophageal Cancer. Journal of Gastrointestinal Surgery, 22(11), 1881–1889.

    Article  PubMed  Google Scholar 

  12. de Melo, G. M., Ribeiro, K. C., Kowalski, L. P., & Deheinzelin, D. (2001). Risk factors for postoperative complications in oral cancer and their prognostic implications. Archives of Otolaryngology – Head & Neck Surgery, 127(7), 828–833.

    Google Scholar 

  13. Rizk, N. P., Bach, P. B., Schrag, D., Bains, M. S., Turnbull, A. D., Karpeh, M., Brennan, M. F., & Rusch, V. W. (2004). The impact of complications on outcomes after resection for esophageal and gastroesophageal junction carcinoma. Journal of the American College of Surgeons, 198(1), 42–50.

    Article  PubMed  Google Scholar 

  14. Ito, H., Are, C., Gonen, M., et al. (2008). Effect of postoperative morbidity on long-term survival after hepatic resection for metastatic colorectal cancer. Annals of Surgery, 247(6), 994–1002.

    Article  PubMed  Google Scholar 

  15. Akyol, A. M., McGregor, J. R., Galloway, D. J., Murray, G. D., & George, W. D. (1991). Anastomotic leaks in colorectal cancer surgery: A risk factor for recurrence? International Journal of Colorectal Disease, 6(4), 179–183.

    Article  CAS  PubMed  Google Scholar 

  16. McArdle, C. S., McMillan, D. C., & Hole, D. J. (2005). Impact of anastomotic leakage on long-term survival of patients undergoing curative resection for colorectal cancer. The British Journal of Surgery, 92(9), 1150–1154.

    Article  CAS  PubMed  Google Scholar 

  17. Aosasa, S., Ono, S., Mochizuki, H., Tsujimoto, H., Osada, S. I., Takayama, E., Seki, S., & Hiraide, H. (2000). Activation of monocytes and endothelial cells depends on the severity of surgical stress. World Journal of Surgery, 24(1), 10–16.

    Article  CAS  PubMed  Google Scholar 

  18. Ono, S., Aosasa, S., Tsujimoto, H., Ueno, C., & Mochizuki, H. (2001). Increased monocyte activation in elderly patients after surgical stress. European Surgical Research, 33(1), 33–38.

    Article  CAS  PubMed  Google Scholar 

  19. Maeda, Y., Takeuchi, H., Matsuda, S., Okamura, A., Fukuda, K., Miyasho, T., Nakamura, R., Suda, K., Wada, N., Kawakubo, H., & Kitagawa, Y. (2020). Clinical significance of preoperative serum concentrations of interleukin-6 as a prognostic marker in patients with esophageal cancer. Esophagus., 17(3), 279–288.

    Article  PubMed  Google Scholar 

  20. Horiguchi, H., Loftus, T. J., Hawkins, R. B., et al. (2018). Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy. Frontiers in Immunology, 9, 595.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tsujimoto, H., Ono, S., Mochizuki, H., Aosasa, S., Majima, T., Ueno, C., & Matsumoto, A. (2002). Role of macrophage inflammatory protein 2 in acute lung injury in murine peritonitis. The Journal of Surgical Research, 103(1), 61–67.

    Article  CAS  PubMed  Google Scholar 

  22. Ikuta, S., Ono, S., Kinoshita, M., Tsujimoto, H., Yamauchi, A., & Mochizuki, H. (2003). Interleukin-18 concentration in the peritoneal fluid correlates with the severity of peritonitis. American Journal of Surgery, 185(6), 550–555.

    Article  CAS  PubMed  Google Scholar 

  23. Tsujimoto, H., Ono, S., Hiraki, S., et al. (2004). Hemoperfusion with polymyxin B-immobilized fibers reduced the number of CD16+ CD14+ monocytes in patients with septic shock. Journal of Endotoxin Research, 10(4), 229–237.

    CAS  PubMed  Google Scholar 

  24. Yang, X., Cheng, X., Tang, Y., Qiu, X., Wang, Z., Fu, G., Wu, J., Kang, H., Wang, J., Wang, H., Chen, F., Xiao, X., Billiar, T. R., & Lu, B. (2020). The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood., 135(14), 1087–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gentile, L. F., Cuenca, A. G., Vanzant, E. L., Efron, P. A., McKinley, B., Moore, F., & Moldawer, L. L. (2013). Is there value in plasma cytokine measurements in patients with severe trauma and sepsis? Methods., 61(1), 3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deville, W. L., Buntinx, F., Bouter, L. M., et al. (2002). Conducting systematic reviews of diagnostic studies: Didactic guidelines. BMC Medical Research Methodology, 2, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tsujimoto, H., Ono, S., Efron, P. A., Scumpia, P. O., Moldawer, L. L., & Mochizuki, H. (2008). Role of toll-like receptors in the development of sepsis. Shock., 29(3), 315–321.

    Article  CAS  PubMed  Google Scholar 

  28. Medzhitov, R., Preston-Hurlburt, P., & Janeway Jr., C. A. (1997). A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature., 388(6640), 394–397.

    Article  CAS  PubMed  Google Scholar 

  29. Tsujimoto, H., Uchida, T., Efron, P. A., Scumpia, P. O., Verma, A., Matsumoto, T., Tschoeke, S. K., Ungaro, R. F., Ono, S., Seki, S., Clare-Salzler, M. J., Baker, H. V., Mochizuki, H., Ramphal, R., & Moldawer, L. L. (2005). Flagellin enhances NK cell proliferation and activation directly and through dendritic cell-NK cell interactions. Journal of Leukocyte Biology, 78(4), 888–897.

    Article  CAS  PubMed  Google Scholar 

  30. Schuster, J. M., & Nelson, P. S. (2000). Toll receptors: An expanding role in our understanding of human disease. Journal of Leukocyte Biology, 67(6), 767–773.

    Article  CAS  PubMed  Google Scholar 

  31. Tsujimoto, H., Ono, S., Majima, T., Kawarabayashi, N., Takayama, E., Kinoshita, M., Seki, S., Hiraide, H., Moldawer, L. L., & Mochizuki, H. (2005). Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis. Shock., 23(1), 39–44.

    Article  CAS  PubMed  Google Scholar 

  32. Tsung, A., Zheng, N., Jeyabalan, G., Izuishi, K., Klune, J. R., Geller, D. A., Lotze, M. T., Lu, L., & Billiar, T. R. (2007). Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. Journal of Leukocyte Biology, 81(1), 119–128.

    Article  CAS  PubMed  Google Scholar 

  33. (1992). American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine, 20(6), 864–874.

  34. Oberholzer, A., Oberholzer, C., & Moldawer, L. L. (2001). Sepsis syndromes: Understanding the role of innate and acquired immunity. Shock., 16(2), 83–96.

    Article  CAS  PubMed  Google Scholar 

  35. Bone, R. C. (1996). Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Annals of Internal Medicine, 125(8), 680–687.

    Article  CAS  PubMed  Google Scholar 

  36. Chochi, K., Ichikura, T., Kinoshita, M., et al. (2008). Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells. Clinical Cancer Research, 14(10), 2909–2917.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, X., Zhao, F., Zhang, H., Zhu, Y., Wu, K., & Tan, G. (2015). Significance of TLR4/MyD88 expression in breast cancer. International Journal of Clinical and Experimental Pathology, 8(6), 7034–7039.

    PubMed  PubMed Central  Google Scholar 

  38. Sato, Y., Motoyama, S., Wakita, A., Kawakita, Y., Liu, J., Nagaki, Y., Nanjo, H., Ito, S., Terata, K., Imai, K., & Minamiya, Y. (2020). High TLR4 expression predicts a poor prognosis after esophagectomy for advanced thoracic esophageal squamous cell carcinoma. Esophagus., 17, 408–416.

    Article  PubMed  Google Scholar 

  39. Makinen, L. K., Ahmed, A., Hagstrom, J., et al. (2016). Toll-like receptors 2, 4, and 9 in primary, metastasized, and recurrent oral tongue squamous cell carcinomas. Journal of Oral Pathology & Medicine, 45(5), 338–345.

    Article  Google Scholar 

  40. Jouhi, L., Koljonen, V., Bohling, T., Haglund, C., & Hagstrom, J. (2015). The expression of toll-like receptors 2, 4, 5, 7 and 9 in Merkel cell carcinoma. Anticancer Research, 35(4), 1843–1849.

    CAS  PubMed  Google Scholar 

  41. Eiro, N., Altadill, A., Juarez, L. M., et al. (2014). Toll-like receptors 3, 4 and 9 in hepatocellular carcinoma: Relationship with clinicopathological characteristics and prognosis. Hepatology Research, 44(7), 769–778.

    Article  CAS  PubMed  Google Scholar 

  42. Okamura, A., Takeuchi, H., Matsuda, S., Ogura, M., Miyasho, T., Nakamura, R., Takahashi, T., Wada, N., Kawakubo, H., Saikawa, Y., & Kitagawa, Y. (2015). Factors affecting cytokine change after esophagectomy for esophageal cancer. Annals of Surgical Oncology, 22(9), 3130–3135.

    Article  PubMed  Google Scholar 

  43. Hotchkiss, R. S., & Karl, I. E. (2003). The pathophysiology and treatment of sepsis. The New England Journal of Medicine, 348(2), 138–150.

    Article  CAS  PubMed  Google Scholar 

  44. Hotchkiss, R. S., Moldawer, L. L., Opal, S. M., Reinhart, K., Turnbull, I. R., & Vincent, J. L. (2016). Sepsis and septic shock. Nature Reviews. Disease Primers, 2, 16045.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tsujimoto, H., Horiguchi, H., Matsumoto, Y., et al. (2020). A Potential Mechanism of Tumor Progression during Systemic Infections Via the Hepatocyte Growth Factor (HGF)/c-Met Signaling Pathway. Journal of Clinical Medicine, 9(7).

  46. Tsujimoto, H., Ono, S., Ichikura, T., Matsumoto, Y., Yamamoto, J., & Hase, K. (2010). Roles of inflammatory cytokines in the progression of gastric cancer: Friends or foes? Gastric Cancer, 13(4), 212–221.

    Article  CAS  PubMed  Google Scholar 

  47. Park, S., Cheon, S., & Cho, D. (2007). The dual effects of interleukin-18 in tumor progression. Cellular & Molecular Immunology, 4(5), 329–335.

    CAS  Google Scholar 

  48. Irino, T., Takeuchi, H., Matsuda, S., Saikawa, Y., Kawakubo, H., Wada, N., Takahashi, T., Nakamura, R., Fukuda, K., Omori, T., & Kitagawa, Y. (2014). CC-chemokine receptor CCR7: A key molecule for lymph node metastasis in esophageal squamous cell carcinoma. BMC Cancer, 14, 291.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sugasawa, H., Ichikura, T., Kinoshita, M., Ono, S., Majima, T., Tsujimoto, H., Chochi, K., Hiroi, S., Takayama, E., Saitoh, D., Seki, S., & Mochizuki, H. (2008). Gastric cancer cells exploit CD4+ cell-derived CCL5 for their growth and prevention of CD8+ cell-involved tumor elimination. International Journal of Cancer, 122(11), 2535–2541.

    Article  CAS  PubMed  Google Scholar 

  50. Majima, T., Ichikura, T., Chochi, K., Kawabata, T., Tsujimoto, H., Sugasawa, H., Kuranaga, N., Takayama, E., Kinoshita, M., Hiraide, H., Seki, S., & Mochizuki, H. (2006). Exploitation of interleukin-18 by gastric cancers for their growth and evasion of host immunity. International Journal of Cancer, 118(2), 388–395.

    Article  CAS  PubMed  Google Scholar 

  51. Bazzoni, F., & Beutler, B. (1996). The tumor necrosis factor ligand and receptor families. The New England Journal of Medicine, 334(26), 1717–1725.

    Article  CAS  PubMed  Google Scholar 

  52. Balkwill, F. (2009). Tumour necrosis factor and cancer. Nature Reviews. Cancer, 9(5), 361–371.

    Article  CAS  PubMed  Google Scholar 

  53. Mocellin, S., Rossi, C. R., Pilati, P., & Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine & Growth Factor Reviews, 16(1), 35–53.

    Article  CAS  Google Scholar 

  54. Efron, P., & Moldawer, L. L. (2003). Sepsis and the dendritic cell. Shock., 20(5), 386–401.

    Article  PubMed  Google Scholar 

  55. Mochizuki, Y., Nakanishi, H., Kodera, Y., et al. (2004). TNF-alpha promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clinical & Experimental Metastasis, 21(1), 39–47.

    Article  CAS  Google Scholar 

  56. Jaiswal, M., LaRusso, N. F., Burgart, L. J., & Gores, G. J. (2000). Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Research, 60(1), 184–190.

    CAS  PubMed  Google Scholar 

  57. Leibovich, S. J., Polverini, P. J., Shepard, H. M., Wiseman, D. M., Shively, V., & Nuseir, N. (1987). Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature., 329(6140), 630–632.

    Article  CAS  PubMed  Google Scholar 

  58. Ma, J., Sawai, H., Matsuo, Y., Ochi, N., Yasuda, A., Takahashi, H., Wakasugi, T., Funahashi, H., Sato, M., Okada, Y., Takeyama, H., & Manabe, T. (2008). Interleukin-1alpha enhances angiogenesis and is associated with liver metastatic potential in human gastric cancer cell lines. The Journal of Surgical Research, 148(2), 197–204.

    Article  CAS  PubMed  Google Scholar 

  59. Furuya, Y., Ichikura, T., Mochizuki, H., & Shinomiya, N. (2000). Relationship between interleukin-1-alpha concentration in tumors and cell growth in gastric cancer, determined using flow cytometry. Gastric Cancer, 3(2), 86–90.

    Article  PubMed  Google Scholar 

  60. Uefuji, K., Ichikura, T., & Mochizuki, H. (2005). Increased expression of interleukin-1alpha and cyclooxygenase-2 in human gastric cancer: A possible role in tumor progression. Anticancer Research, 25(5), 3225–3230.

    CAS  PubMed  Google Scholar 

  61. Furuya, Y., Ichikura, T., & Mochizuki, H. (1999). Interleukin-1alpha concentration in tumors as a risk factor for liver metastasis in gastric cancer. Surgery Today, 29(3), 288–289.

    Article  CAS  PubMed  Google Scholar 

  62. Beales, I. L. (2002). Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture. BMC Gastroenterology, 2, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vainer, N., Dehlendorff, C., & Johansen, J. S. (2018). Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget., 9(51), 29820–29841.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ito, R., Yasui, W., Kuniyasu, H., Yokozaki, H., & Tahara, E. (1997). Expression of interleukin-6 and its effect on the cell growth of gastric carcinoma cell lines. Japanese Journal of Cancer Research, 88(10), 953–958.

    Article  CAS  PubMed  Google Scholar 

  65. Park, J., Tadlock, L., Gores, G. J., & Patel, T. (1999). Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology., 30(5), 1128–1133.

    Article  CAS  PubMed  Google Scholar 

  66. Leu, C. M., Wong, F. H., Chang, C., Huang, S. F., & Hu, C. P. (2003). Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways. Oncogene., 22(49), 7809–7818.

    Article  CAS  PubMed  Google Scholar 

  67. Ashizawa, T., Okada, R., Suzuki, Y., et al. (2005). Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: Role of IL-6 as a prognostic factor. Gastric Cancer, 8(2), 124–131.

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura, K., Okamura, H., Wada, M., Nagata, K., & Tamura, T. (1989). Endotoxin-induced serum factor that stimulates gamma interferon production. Infection and Immunity, 57(2), 590–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hiraki, S., Ono, S., Kinoshita, M., Tsujimoto, H., Seki, S., & Mochizuki, H. (2007). Interleukin-18 restores immune suppression in patients with nonseptic surgery, but not with sepsis. American Journal of Surgery, 193(6), 676–680.

    Article  CAS  PubMed  Google Scholar 

  70. Kawabata, T., Ichikura, T., Majima, T., Seki, S., Chochi, K., Takayama, E., Hiraide, H., & Mochizuki, H. (2001). Preoperative serum interleukin-18 level as a postoperative prognostic marker in patients with gastric carcinoma. Cancer., 92(8), 2050–2055.

    Article  CAS  PubMed  Google Scholar 

  71. Ye, Z. B., Ma, T., Li, H., Jin, X. L., & Xu, H. M. (2007). Expression and significance of intratumoral interleukin-12 and interleukin-18 in human gastric carcinoma. World Journal of Gastroenterology, 13(11), 1747–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kataoka, K., Takeuchi, H., Mizusawa, J., Igaki, H., Ozawa, S., Abe, T., Nakamura, K., Kato, K., Ando, N., & Kitagawa, Y. (2017). Prognostic impact of postoperative morbidity after Esophagectomy for esophageal Cancer: Exploratory analysis of JCOG9907. Annals of Surgery, 265(6), 1152–1157.

    Article  PubMed  Google Scholar 

  73. Ogura, M., Takeuchi, H., Kawakubo, H., Nishi, T., Fukuda, K., Nakamura, R., Takahashi, T., Wada, N., Saikawa, Y., Omori, T., Miyasho, T., Yamada, S., & Kitagawa, Y. (2013). Clinical significance of CXCL-8/CXCR-2 network in esophageal squamous cell carcinoma. Surgery., 154(3), 512–520.

    Article  PubMed  Google Scholar 

  74. Zlotnik, A. (2006). Chemokines and cancer. International Journal of Cancer, 119(9), 2026–2029.

    Article  CAS  PubMed  Google Scholar 

  75. Kitadai, Y., Haruma, K., Mukaida, N., Ohmoto, Y., Matsutani, N., Yasui, W., Yamamoto, S., Sumii, K., Kajiyama, G., Fidler, I. J., & Tahara, E. (2000). Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clinical Cancer Research, 6(7), 2735–2740.

    CAS  PubMed  Google Scholar 

  76. Konno, H., Ohta, M., Baba, M., Suzuki, S., & Nakamura, S. (2003). The role of circulating IL-8 and VEGF protein in the progression of gastric cancer. Cancer Science, 94(8), 735–740.

    Article  CAS  PubMed  Google Scholar 

  77. Sugasawa, H., Ichikura, T., Tsujimoto, H., Kinoshita, M., Morita, D., Ono, S., Chochi, K., Tsuda, H., Seki, S., & Mochizuki, H. (2008). Prognostic significance of expression of CCL5/RANTES receptors in patients with gastric cancer. Journal of Surgical Oncology, 97(5), 445–450.

    Article  PubMed  Google Scholar 

  78. Wang, J. M., Deng, X., Gong, W., & Su, S. (1998). Chemokines and their role in tumor growth and metastasis. Journal of Immunological Methods, 220(1–2), 1–17.

    Article  CAS  PubMed  Google Scholar 

  79. Smyth, E. C., Sclafani, F., & Cunningham, D. (2014). Emerging molecular targets in oncology: Clinical potential of MET/hepatocyte growth-factor inhibitors. Oncotargets and Therapy, 7, 1001–1014.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Naldini, L., Weidner, K. M., Vigna, E., et al. (1991). Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. The EMBO Journal, 10(10), 2867–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, A., Kmiecik, T., Vande Woude, G., & Aaronson, S. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science., 251(4995), 802–804.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J. M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K. R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P. E., Abumrad, N. N., Sama, A., & Tracey, K. J. (1999). HMG-1 as a late mediator of endotoxin lethality in mice. Science., 285(5425), 248–251.

    Article  CAS  PubMed  Google Scholar 

  83. Tang, D., Kang, R., Zeh 3rd, H. J., & Lotze, M. T. (2010). High-mobility group box 1 and cancer. Biochimica et Biophysica Acta, 1799(1–2), 131–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Suda, K., Kitagawa, Y., Ozawa, S., Saikawa, Y., Ueda, M., Abraham, E., Kitajima, M., & Ishizaka, A. (2006). Serum concentrations of high-mobility group box chromosomal protein 1 before and after exposure to the surgical stress of thoracic esophagectomy: A predictor of clinical course after surgery? Diseases of the Esophagus, 19(1), 5–9.

    Article  CAS  PubMed  Google Scholar 

  85. Krynetskaia, N. F., Phadke, M. S., Jadhav, S. H., & Krynetskiy, E. Y. (2009). Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage. Molecular Cancer Therapeutics, 8(4), 864–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ito, N., DeMarco, R. A., Mailliard, R. B., et al. (2007). Cytolytic cells induce HMGB1 release from melanoma cell lines. Journal of Leukocyte Biology, 81(1), 75–83.

    Article  CAS  PubMed  Google Scholar 

  87. Campana, L., Bosurgi, L., & Rovere-Querini, P. (2008). HMGB1: A two-headed signal regulating tumor progression and immunity. Current Opinion in Immunology, 20(5), 518–523.

    Article  CAS  PubMed  Google Scholar 

  88. Murray, H. W. (1996). Interferon-gamma in infection and immunoparalysis. Intensive Care Medicine, 22(Suppl 4), S455.

    Article  PubMed  Google Scholar 

  89. Hiraki, S., Ono, S., Tsujimoto, H., Kinoshita, M., Takahata, R., Miyazaki, H., Saitoh, D., & Hase, K. (2012). Neutralization of interleukin-10 or transforming growth factor-beta decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival. Surgery., 151(2), 313–322.

    Article  PubMed  Google Scholar 

  90. Hatanaka, H., Abe, Y., Naruke, M., Tokunaga, T., Oshika, Y., Kawakami, T., Osada, H., Nagata, J., Kamochi, J., Tsuchida, T., Kijima, H., Yamazaki, H., Inoue, H., Ueyama, Y., & Nakamura, M. (2001). Significant correlation between interleukin 10 expression and vascularization through angiopoietin/TIE2 networks in non-small cell lung cancer. Clinical Cancer Research, 7(5), 1287–1292.

    CAS  PubMed  Google Scholar 

  91. Sugai, H., Kono, K., Takahashi, A., Ichihara, F., Kawaida, H., Fujii, H., & Matsumoto, Y. (2004). Characteristic alteration of monocytes with increased intracellular IL-10 and IL-12 in patients with advanced-stage gastric cancer. The Journal of Surgical Research, 116(2), 277–287.

    Article  CAS  PubMed  Google Scholar 

  92. Morisaki, T., Katano, M., Ikubo, A., Anan, K., Nakamura, M., Nakamura, K., Sato, H., Tanaka, M., & Torisu, M. (1996). Immunosuppressive cytokines (IL-10, TGF-beta) genes expression in human gastric carcinoma tissues. Journal of Surgical Oncology, 63(4), 234–239.

    Article  CAS  PubMed  Google Scholar 

  93. Sakamoto, T., Saito, H., Tatebe, S., Tsujitani, S., Ozaki, M., Ito, H., & Ikeguchi, M. (2006). Interleukin-10 expression significantly correlates with minor CD8+ T-cell infiltration and high microvessel density in patients with gastric cancer. International Journal of Cancer, 118(8), 1909–1914.

    Article  CAS  PubMed  Google Scholar 

  94. De Vita, F., Orditura, M., Galizia, G., et al. (1999). Serum interleukin-10 levels in patients with advanced gastrointestinal malignancies. Cancer., 86(10), 1936–1943.

    Article  PubMed  Google Scholar 

  95. Majima, T., Ichikura, T., Seki, S., Takayama, E., Hiraide, H., & Mochizuki, H. (2001). Interleukin-10 and interferon-gamma levels within the peritoneal cavity of patients with gastric cancer. Journal of Surgical Oncology, 78(2), 124–130 discussion 131.

    Article  CAS  PubMed  Google Scholar 

  96. Majima, T., Ichikura, T., Seki, S., Takayama, E., Matsumoto, A., Kawabata, T., Chochi, K., Hiraide, H., & Mochizuki, H. (2002). The influence of interleukin-10 and interleukin-18 on interferon-gamma production by peritoneal exudate cells in patients with gastric carcinoma. Anticancer Research, 22(2B), 1193–1199.

    CAS  PubMed  Google Scholar 

  97. Chen, W., & Wahl, S. M. (2003). TGF-beta: The missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine & Growth Factor Reviews, 14(2), 85–89.

    Article  CAS  Google Scholar 

  98. Kawaida, H., Kono, K., Takahashi, A., Sugai, H., Mimura, K., Miyagawa, N., Omata, H., Ooi, A., & Fujii, H. (2005). Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer. The Journal of Surgical Research, 124(1), 151–157.

    Article  CAS  PubMed  Google Scholar 

  99. Fu, H., Hu, Z., Wen, J., Wang, K., & Liu, Y. (2009). TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascin1 expression via ERK and JNK signal pathways. Acta Biochimica et Biophysica Sinica Shanghai, 41(8), 648–656.

    Article  CAS  Google Scholar 

  100. Inoue, T., Chung, Y. S., Yashiro, M., Nishimura, S., Hasuma, T., Otani, S., & Sowa, M. (1997). Transforming growth factor-beta and hepatocyte growth factor produced by gastric fibroblasts stimulate the invasiveness of scirrhous gastric cancer cells. Japanese Journal of Cancer Research, 88(2), 152–159.

    Article  CAS  PubMed  Google Scholar 

  101. Maehara, Y., Kakeji, Y., Kabashima, A., Emi, Y., Watanabe, A., Akazawa, K., Baba, H., Kohnoe, S., & Sugimachi, K. (1999). Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma. Journal of Clinical Oncology, 17(2), 607–614.

    Article  CAS  PubMed  Google Scholar 

  102. Blum, A. E., Venkitachalam, S., Ravillah, D., Chelluboyina, A. K., Kieber-Emmons, A. M., Ravi, L., Kresak, A., Chandar, A. K., Markowitz, S. D., Canto, M. I., Wang, J. S., Shaheen, N. J., Guo, Y., Shyr, Y., Willis, J. E., Chak, A., Varadan, V., & Guda, K. (2019). Systems biology analyses show Hyperactivation of transforming growth factor-beta and JNK signaling pathways in esophageal Cancer. Gastroenterology., 156(6), 1761–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saito, H., Tsujitani, S., Oka, S., Kondo, A., Ikeguchi, M., Maeta, M., & Kaibara, N. (1999). The expression of transforming growth factor-beta1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer., 86(8), 1455–1462.

    Article  CAS  PubMed  Google Scholar 

  104. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science., 299(5609), 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  105. Ono, S., Kimura, A., Hiraki, S., Takahata, R., Tsujimoto, H., Kinoshita, M., Miyazaki, H., Yamamoto, J., Hase, K., & Saitoh, D. (2013). Removal of increased circulating CD4+CD25+Foxp3+ regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers. Surgery., 153(2), 262–271.

    Article  PubMed  Google Scholar 

  106. Kono, K., Kawaida, H., Takahashi, A., Sugai, H., Mimura, K., Miyagawa, N., Omata, H., & Fujii, H. (2006). CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunology, Immunotherapy, 55(9), 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  107. Saleh, R., & Elkord, E. (2020). FoxP3(+) T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Letters, 490, 174–185.

    Article  CAS  PubMed  Google Scholar 

  108. Wan, Y., Zhang, C., Xu, Y., Wang, M., Rao, Q., Xing, H., Tian, Z., Tang, K., Mi, Y., Wang, Y., & Wang, J. (2020). Hyperfunction of CD4 CD25 regulatory T cells in de novo acute myeloid leukemia. BMC Cancer, 20(1), 472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ichihara, F., Kono, K., Takahashi, A., Kawaida, H., Sugai, H., & Fujii, H. (2003). Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clinical Cancer Research, 9(12), 4404–4408.

    PubMed  Google Scholar 

  110. Correale, P., Rotundo, M. S., Del Vecchio, M. T., et al. (2010). Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. Journal of Immunotherapy, 33(4), 435–441.

    Article  PubMed  Google Scholar 

  111. Salama, P., Phillips, M., Grieu, F., Morris, M., Zeps, N., Joseph, D., Platell, C., & Iacopetta, B. (2009). Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. Journal of Clinical Oncology, 27(2), 186–192.

    Article  PubMed  Google Scholar 

  112. Yang, R., Cai, Z., Zhang, Y., Yutzy, W. H., Roby, K. F., & Roden, R. B. (2006). CD80 in immune suppression by mouse ovarian carcinoma-associated gr-1+CD11b+ myeloid cells. Cancer Research, 66(13), 6807–6815.

    Article  CAS  PubMed  Google Scholar 

  113. Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., & Schreiber, H. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425 author reply 426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, Y., Li, C., Liu, T., Dai, X., & Bazhin, A. V. (2020). Myeloid-derived suppressor cells in tumors: From mechanisms to antigen specificity and microenvironmental regulation. Frontiers in Immunology, 11, 1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brudecki, L., Ferguson, D. A., McCall, C. E., & El Gazzar, M. (2012). Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infection and Immunity, 80(6), 2026–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mathias, B., Delmas, A. L., Ozrazgat-Baslanti, T., Vanzant, E. L., Szpila, B. E., Mohr, A. M., Moore, F. A., Brakenridge, S. C., Brumback, B. A., Moldawer, L. L., Efron, P. A., & the Sepsis, Critical Illness Research Center Investigators. (2017). Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe Sepsis/septic shock. Annals of Surgery, 265(4), 827–834.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Delano, M. J., Scumpia, P. O., Weinstein, J. S., Coco, D., Nagaraj, S., Kelly-Scumpia, K. M., O'Malley, K. A., Wynn, J. L., Antonenko, S., al-Quran, S. Z., Swan, R., Chung, C. S., Atkinson, M. A., Ramphal, R., Gabrilovich, D. I., Reeves, W. H., Ayala, A., Phillips, J., LaFace, D., Heyworth, P. G., Clare-Salzler, M., & Moldawer, L. L. (2007). MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. The Journal of Experimental Medicine, 204(6), 1463–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cuenca, A. G., Cuenca, A. L., Winfield, R. D., et al. (2014). Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. Journal of Immunology, 192(12), 6111–6119.

    Article  CAS  Google Scholar 

  119. Li, C., Liu, T., Bazhin, A. V., & Yang, Y. (2017). The sabotaging role of myeloid cells in anti-Angiogenic therapy: Coordination of angiogenesis and immune suppression by hypoxia. Journal of Cellular Physiology, 232(9), 2312–2322.

    Article  CAS  PubMed  Google Scholar 

  120. Ono, S., Ueno, C., Aosasa, S., Tsujimoto, H., Seki, S., & Mochizuki, H. (2001). Severe sepsis induces deficient interferon-gamma and interleukin-12 production, but interleukin-12 therapy improves survival in peritonitis. American Journal of Surgery, 182(5), 491–497.

    Article  CAS  PubMed  Google Scholar 

  121. Hashimoto, W., Takeda, K., Anzai, R., et al. (1995). Cytotoxic NK1.1 Ag+ alpha beta T cells with intermediate TCR induced in the liver of mice by IL-12. Journal of Immunology, 154(9), 4333–4340.

    Article  CAS  Google Scholar 

  122. Takahashi, M., Ogasawara, K., Takeda, K., et al. (1996). LPS induces NK1.1+ alpha beta T cells with potent cytotoxicity in the liver of mice via production of IL-12 from Kupffer cells. Journal of Immunology, 156(7), 2436–2442.

    Article  CAS  Google Scholar 

  123. DerHagopian, R. P., Sugarbaker, E. V., & Ketcham, A. (1978). Inflammatory oncotaxis. Jama., 240(4), 374–375.

    Article  CAS  PubMed  Google Scholar 

  124. Sakuramoto, S., Sasako, M., Yamaguchi, T., Kinoshita, T., Fujii, M., Nashimoto, A., Furukawa, H., Nakajima, T., Ohashi, Y., Imamura, H., Higashino, M., Yamamura, Y., Kurita, A., Arai, K., & ACTS-GC Group. (2007). Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. The New England Journal of Medicine, 357(18), 1810–1820.

    Article  CAS  PubMed  Google Scholar 

  125. McMichael, E. L., Benner, B., Atwal, L. S., et al. (2019). A phase I/II trial of Cetuximab in combination with Interleukin-12 administered to patients with Unresectable primary or recurrent head and neck squamous cell carcinoma. Clinical Cancer Research, 25(16), 4955–4965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ciardiello, D., Elez, E., Tabernero, J., & Seoane, J. (2020). Clinical development of therapies targeting TGFbeta: Current knowledge and future perspectives. Annals of Oncology, 31, 1336–1349.

    Article  CAS  PubMed  Google Scholar 

  127. Smyth, M. J., Cretney, E., Kershaw, M. H., & Hayakawa, Y. (2004). Cytokines in cancer immunity and immunotherapy. Immunological Reviews, 202, 275–293.

    Article  CAS  PubMed  Google Scholar 

  128. Chow, L. Q. M., Morishima, C., Eaton, K. D., Baik, C. S., Goulart, B. H., Anderson, L. N., Manjarrez, K. L., Dietsch, G. N., Bryan, J. K., Hershberg, R. M., Disis, M. L., & Martins, R. G. (2017). Phase Ib trial of the toll-like receptor 8 agonist, Motolimod (VTX-2337), combined with Cetuximab in patients with recurrent or metastatic SCCHN. Clinical Cancer Research, 23(10), 2442–2450.

    Article  CAS  PubMed  Google Scholar 

  129. Salama, A. K., & Moschos, S. J. (2017). Next steps in immuno-oncology: Enhancing antitumor effects through appropriate patient selection and rationally designed combination strategies. Annals of Oncology, 28(1), 57–74.

    Article  CAS  PubMed  Google Scholar 

  130. Hotchkiss, R. S., & Opal, S. (2010). Immunotherapy for sepsis--a new approach against an ancient foe. The New England Journal of Medicine, 363(1), 87–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Venet, F., & Monneret, G. (2018). Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews. Nephrology, 14(2), 121–137.

    Article  CAS  PubMed  Google Scholar 

  132. Hotchkiss, R. S., Colston, E., Yende, S., Angus, D. C., Moldawer, L. L., Crouser, E. D., Martin, G. S., Coopersmith, C. M., Brakenridge, S., Mayr, F. B., Park, P. K., Ye, J., Catlett, I. M., Girgis, I. G., & Grasela, D. M. (2019). Immune checkpoint inhibition in Sepsis: A phase 1b randomized, placebo-controlled, single ascending dose study of Antiprogrammed cell death-ligand 1 antibody (BMS-936559). Critical Care Medicine, 47(5), 632–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Hidekazu Sugasawa, Shuichi Hiraki, Yoshihisa Yaguchi, Shinsuke Nomura, Nozomi Ito, Manabu Harada, Takao Sugihara, Yusuke Ishibashi, Keita Kouzu, Yujiro Itazaki, and Satoshi Tsuchiya for their extensive contributions.

*p < 0.05 vs. sham-operated mice. CLP, cecal ligation and puncture; IL, interleukin; HGF, hepatocyte growth factor. Adapted from reference [45]

Human gastric cancer cells were cultured in 10% FBS RPMI medium with or without the indicated concentrations of interleukin-18 for 48 h. Thymidine uptake was measured in a liquid scintillation counter. The data are shown as the mean counts per minute for the triplicate wells ± standard deviation. The experiments were repeated five times with similar results, and data from one representative experiment are shown. Adapted from reference [50]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Tsujimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsujimoto, H., Kobayashi, M., Sugasawa, H. et al. Potential mechanisms of tumor progression associated with postoperative infectious complications. Cancer Metastasis Rev 40, 285–296 (2021). https://doi.org/10.1007/s10555-020-09945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09945-z

Keywords

Navigation