Skip to main content

Advertisement

Log in

Caveola-forming proteins and prostate cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  2. Palade, G. (1953). The fine structure of blood capillaries. Journal of Applied Physics, 24, 1424.

    Google Scholar 

  3. Parton, R. G., & Collins, B. M. (2016). Unraveling the architecture of caveolae. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14170–14172. https://doi.org/10.1073/pnas.1617954113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parton, R. G., del Pozo, M. A., Vassilopoulos, S., Nabi, I. R., Le Lay, S., Lundmark, R., et al. (2020). Caveolae: the FAQs. Traffic, 21, 181-185. https://doi.org/10.1111/tra.12689.

  5. Parton, R. G. (2018). Caveolae: structure, function, and relationship to disease. Annual Review of Cell and Developmental Biology, 34(1), 111–136. https://doi.org/10.1146/annurev-cellbio-100617-062737.

    Article  CAS  PubMed  Google Scholar 

  6. Nassar, Z. D., & Parat, M. O. (2015). Cavin family: new players in the biology of caveolae. International Review of Cell and Molecular Biology, 320, 235–305. https://doi.org/10.1016/bs.ircmb.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  7. Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., et al. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124. https://doi.org/10.1016/j.cell.2007.11.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, L., Brown, D., McKee, M., Lebrasseur, N. K., Yang, D., Albrecht, K. H., et al. (2008). Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metabolism, 8(4), 310–317. https://doi.org/10.1016/j.cmet.2008.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539), 2449–2452. https://doi.org/10.1126/science.1062688.

    Article  CAS  PubMed  Google Scholar 

  10. Minetti, C., Bado, M., Broda, P., Sotgia, F., Bruno, C., Galbiati, F., et al. (2002). Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency. The American Journal of Pathology, 160(1), 265–270. https://doi.org/10.1016/s0002-9440(10)64370-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nassar, Z. D., Hill, M. M., Parton, R. G., & Parat, M. O. (2013). Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nature Reviews. Urology, 10(9), 529–536. https://doi.org/10.1038/nrurol.2013.168.

    Article  CAS  PubMed  Google Scholar 

  12. Senju, Y., Itoh, Y., Takano, K., Hamada, S., & Suetsugu, S. (2011). Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. Journal of Cell Science, 124(Pt 12), 2032–2040. https://doi.org/10.1242/jcs.086264.

    Article  CAS  PubMed  Google Scholar 

  13. Hansen, C. G., Howard, G., & Nichols, B. J. (2011). Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. Journal of Cell Science, 124(Pt 16), 2777–2785. https://doi.org/10.1242/jcs.084319.

    Article  CAS  PubMed  Google Scholar 

  14. Ludwig, A., Howard, G., Mendoza-Topaz, C., Deerinck, T., Mackey, M., Sandin, S., et al. (2013). Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biology, 11(8), e1001640. https://doi.org/10.1371/journal.pbio.1001640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamaguchi, T., Lu, C., Ida, L., Yanagisawa, K., Usukura, J., Cheng, J., et al. (2016). ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nature Communications, 7, 10060. https://doi.org/10.1038/ncomms10060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parton, R. G., Tillu, V. A., & Collins, B. M. (2018). Caveolae. Current Biology, 28(8), R402–r405. https://doi.org/10.1016/j.cub.2017.11.075.

    Article  CAS  PubMed  Google Scholar 

  17. Bastiani, M., Liu, L., Hill, M. M., Jedrychowski, M. P., Nixon, S. J., Lo, H. P., et al. (2009). MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. The Journal of Cell Biology, 185(7), 1259–1273. https://doi.org/10.1083/jcb.200903053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McMahon, K.-A., Zajicek, H., Li, W.-P., Peyton, M. J., Minna, J. D., Hernandez, V. J., et al. (2009). SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. The EMBO Journal, 28(8), 1001–1015. https://doi.org/10.1038/emboj.2009.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hansen, C. G., Bright, N. A., Howard, G., & Nichols, B. J. (2009). SDPR induces membrane curvature and functions in the formation of caveolae. Nature Cell Biology, 11(7), 807–814. https://doi.org/10.1038/ncb1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hommelgaard, A. M., Roepstorff, K., Vilhardt, F., Torgersen, M. L., Sandvig, K., & van Deurs, B. (2005). Caveolae: stable membrane domains with a potential for internalization. Traffic, 6(9), 720–724. https://doi.org/10.1111/j.1600-0854.2005.00314.x.

    Article  CAS  PubMed  Google Scholar 

  21. Ross, S. A., Everson, W. V., & Smart, E. J. (2008). The Pharmacology of caveolae. In C. Ehrhardt & K.-J. Kim (Eds.), Drug absorption studies: in situ, in vitro and in silico models (pp. 598–615). Boston, MA: Springer US.

    Chapter  Google Scholar 

  22. Spisni, E., Bianco, M., Griffoni, C., Toni, M., D'Angelo, R., Santi, S., et al. (2003). Mechanosensing role of caveolae and caveolar constituents in human endothelial cells. Journal of Cellular Physiology, 197, 198–204. https://doi.org/10.1002/jcp.10344.

    Article  CAS  PubMed  Google Scholar 

  23. Lo, H. P., Hall, T. E., & Parton, R. G. (2016). Mechanoprotection by skeletal muscle caveolae. Bioarchitecture, 6(1), 22–27. https://doi.org/10.1080/19490992.2015.1131891.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fernandez-Rojo, M. A., & Ramm, G. A. (2016). Caveolin-1 function in liver physiology and disease. Trends in Molecular Medicine, 22(10), 889–904. https://doi.org/10.1016/j.molmed.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  25. Li, J., Scherl, A., Medina, F., Frank, P. G., Kitsis, R. N., Tanowitz, H. B., et al. (2005). Impaired phagocytosis in caveolin-1 deficient macrophages. Cell Cycle, 4(11), 1599–1607. https://doi.org/10.4161/cc.4.11.2117.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta, R., Toufaily, C., & Annabi, B. (2014). Caveolin and cavin family members: dual roles in cancer. Biochimie, 107(Pt B), 188–202. https://doi.org/10.1016/j.biochi.2014.09.010.

    Article  CAS  PubMed  Google Scholar 

  27. Sotgia, F., Martinez-Outschoorn, U. E., Howell, A., Pestell, R. G., Pavlides, S., & Lisanti, M. P. (2012). Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annual Review of Pathology, 7, 423–467. https://doi.org/10.1146/annurev-pathol-011811-120856.

    Article  CAS  PubMed  Google Scholar 

  28. Gallardo-Arrieta, F., Mogas, T., Magan, L., Garcia, M. A., Garcia, F., Abal, M., et al. (2006). Ultrastructural changes in prostate cells during hormone-induced canine prostatic hyperplasia. Ultrastructural Pathology, 30(6), 435–442. https://doi.org/10.1080/01913120600854079.

    Article  PubMed  Google Scholar 

  29. Gobbo, M. G., Taboga, S. R., Ribeiro, D. L., & Goes, R. M. (2012). Short-term stromal alterations in the rat ventral prostate following alloxan-induced diabetes and the influence of insulin replacement. Micron, 43(2-3), 326–333. https://doi.org/10.1016/j.micron.2011.09.009.

    Article  CAS  PubMed  Google Scholar 

  30. Gould, M. L., Williams, G., & Nicholson, H. D. (2010). Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. The Prostate, 70(15), 1609–1621. https://doi.org/10.1002/pros.21195.

    Article  CAS  PubMed  Google Scholar 

  31. Bai, L., Deng, X., Li, Q., Wang, M., An, W., Deli, A., et al. (2012). Down-regulation of the cavin family proteins in breast cancer. Journal of Cellular Biochemistry, 113(1), 322–328. https://doi.org/10.1002/jcb.23358.

    Article  CAS  PubMed  Google Scholar 

  32. Li, X., Jia, Z., Shen, Y., Ichikawa, H., Jarvik, J., Nagele, R. G., et al. (2008). Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate. Cancer Science, 99(7), 1326–1333. https://doi.org/10.1111/j.1349-7006.2008.00816.x.

    Article  CAS  PubMed  Google Scholar 

  33. Tian, Y., Yu, Y., Hou, L. K., Chi, J. R., Mao, J. F., Xia, L., et al. (2016). Serum deprivation response inhibits breast cancer progression by blocking transforming growth factor-beta signaling. Cancer Science, 107(3), 274–280. https://doi.org/10.1111/cas.12879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ozturk, S., Papageorgis, P., Wong, C. K., Lambert, A. W., Abdolmaleky, H. M., Thiagalingam, A., et al. (2016). SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 638–643. https://doi.org/10.1073/pnas.1514663113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, Y., Liu, X., Sun, Y., Wu, D., Qiu, A., Cheng, H., et al. (2015). Decreased expression and prognostic role of EHD2 in human breast carcinoma: correlation with E-cadherin. Journal of Molecular Histology, 46(2), 221–231. https://doi.org/10.1007/s10735-015-9614-7.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, X., Ren, H., Yao, L., Chen, X., & He, A. (2015). Role of EHD2 in migration and invasion of human breast cancer cells. Tumour Biology, 36(5), 3717–3726. https://doi.org/10.1007/s13277-014-3011-9.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, S., Chen, L., Cui, B., Chuang, H. Y., Yu, J., Wang-Rodriguez, J., et al. (2012). ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One, 7(3), e31127. https://doi.org/10.1371/journal.pone.0031127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chien, H. P., Ueng, S. H., Chen, S. C., Chang, Y. S., Lin, Y. C., Lo, Y. F., et al. (2016). Expression of ROR1 has prognostic significance in triple negative breast cancer. Virchows Archiv, 468(5), 589–595. https://doi.org/10.1007/s00428-016-1911-3.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, S., Zhang, H., Ghia, E. M., Huang, J., Wu, L., Zhang, J., et al. (2019). Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1370–1377. https://doi.org/10.1073/pnas.1816262116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, H., Qiu, J., Ye, C., Yang, D., Gao, L., Su, Y., et al. (2014). ROR1 expression correlated with poor clinical outcome in human ovarian cancer. Scientific Reports, 4, 5811. https://doi.org/10.1038/srep05811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin, Z., Gao, M., Chu, S., Su, Y., Ye, C., Wang, Y., et al. (2017). Antitumor activity of a newly developed monoclonal antibody against ROR1 in ovarian cancer cells. Oncotarget, 8(55), 94210–94222. https://doi.org/10.18632/oncotarget.21618.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Henry, C., Llamosas, E., Knipprath-Meszaros, A., Schoetzau, A., Obermann, E., Fuenfschilling, M., et al. (2015). Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion. Oncotarget, 6(37), 40310–40326. https://doi.org/10.18632/oncotarget.5643.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Henry, C. E., Llamosas, E., Djordjevic, A., Hacker, N. F., & Ford, C. E. (2016). Migration and invasion is inhibited by silencing ROR1 and ROR2 in chemoresistant ovarian cancer. Oncogenesis, 5(5), e226. https://doi.org/10.1038/oncsis.2016.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, S., Cui, B., Lai, H., Liu, G., Ghia, E. M., Widhopf 2nd, G. F., et al. (2014). Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proceedings of the National Academy of Sciences of the United States of America, 111(48), 17266–17271. https://doi.org/10.1073/pnas.1419599111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Henry, C. E., Llamosas, E., Daniels, B., Coopes, A., Tang, K., & Ford, C. E. (2018). ROR1 and ROR2 play distinct and opposing roles in endometrial cancer. Gynecologic Oncology, 148(3), 576–584. https://doi.org/10.1016/j.ygyno.2018.01.025.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X., Liu, Z., & Yang, Z. (2018). Expression and clinical significance of Caveolin-1 in prostate cancer after transurethral surgery. BMC Urology, 18(1), 102. https://doi.org/10.1186/s12894-018-0418-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karam, J. A., Lotan, Y., Roehrborn, C. G., Ashfaq, R., Karakiewicz, P. I., & Shariat, S. F. (2007). Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. The Prostate, 67(6), 614–622. https://doi.org/10.1002/pros.20557.

    Article  PubMed  Google Scholar 

  48. Goto, T., Nguyen, B. P., Nakano, M., Ehara, H., Yamamoto, N., & Deguchi, T. (2008). Utility of Bcl-2, P53, Ki-67, and caveolin-1 immunostaining in the prediction of biochemical failure after radical prostatectomy in a Japanese population. Urology, 72(1), 167–171. https://doi.org/10.1016/j.urology.2007.11.003.

    Article  PubMed  Google Scholar 

  49. Panic, A., Ketteler, J., Reis, H., Sak, A., Herskind, C., Maier, P., et al. (2017). Progression-related loss of stromal caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance. Scientific Reports, 7(1), 41138. https://doi.org/10.1038/srep41138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klein, D., Schmitz, T., Verhelst, V., Panic, A., Schenck, M., Reis, H., et al. (2015). Endothelial caveolin-1 regulates the radiation response of epithelial prostate tumors. Oncogenesis, 4(5), e148–e148. https://doi.org/10.1038/oncsis.2015.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pellinen, T., Blom, S., Sánchez, S., Välimäki, K., Mpindi, J.-P., Azegrouz, H., et al. (2018). ITGB1-dependent upregulation of caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Scientific Reports, 8(1), 2338. https://doi.org/10.1038/s41598-018-20161-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, G., Goltsov, A. A., Ren, C., Kurosaka, S., Edamura, K., Logothetis, R., et al. (2012). Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer. Molecular Cancer Research, 10(2), 218–229. https://doi.org/10.1158/1541-7786.MCR-11-0451.

    Article  CAS  PubMed  Google Scholar 

  53. Zenklusen, J. C., Thompson, J. C., Troncoso, P., Kagan, J., & Conti, C. J. (1994). Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31. 1. Cancer Research, 54(24), 6370.

    CAS  PubMed  Google Scholar 

  54. Takahashi, S., Qian, J., Brown, J. A., Alcaraz, A., Bostwick, D. G., Lieber, M. M., et al. (1994). Potential markers of prostate cancer aggressiveness detected by fluorescence in situ hybridization in needle biopsies. Cancer Research, 54(13), 3574.

    CAS  PubMed  Google Scholar 

  55. Takahashi, S., Shan, A. L., Ritland, S. R., Delacey, K. A., Bostwick, D. G., Lieber, M. M., et al. (1995). Frequent loss of heterozygosity at 7q31. 1 in primary prostate cancer is associated with tumor aggressiveness and progression. Cancer Research, 55(18), 4114.

    CAS  PubMed  Google Scholar 

  56. Engelman, J. A., Zhang, X. L., Galbiati, F., & Lisanti, M. P. (1998). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Letters, 429(3), 330–336. https://doi.org/10.1016/s0014-5793(98)00619-x.

    Article  CAS  PubMed  Google Scholar 

  57. Cher, M. L., Bova, G. S., Moore, D. H., Small, E. J., Carroll, P. R., Pin, S. S., et al. (1996). Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Research, 56(13), 3091.

    CAS  PubMed  Google Scholar 

  58. Joos, S., Bergerheim, U. S. R., Pan, Y., Matsuyama, H., Bentz, M., Manoir, S. D., et al. (1995). Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes, Chromosomes and Cancer, 14(4), 267–276.

    Article  CAS  PubMed  Google Scholar 

  59. Visakorpi, T., Kallioniemi, A. H., Syvänen, A. C., Hyytinen, E. R., Karhu, R., Tammela, T., et al. (1995). Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Research, 55(2), 342–347.

    CAS  PubMed  Google Scholar 

  60. Brookman-Amissah, N., Duchesnes, C., Williamson, M., Wang, Q., Ahmed, A., Feneley, M., et al. (2005). Genome-wide screening for genetic changes in a matched pair of benign and prostate cancer cell lines using array CGH. Prostate Cancer and Prostatic Diseases, 8(4), 335–343.

    Article  CAS  PubMed  Google Scholar 

  61. Nupponen, N. N., Kakkola, L., Koivisto, P., & Visakorpi, T. (1998). Genetic alterations in hormone-refractory recurrent prostate carcinomas. The American Journal of Pathology, 153(1), 141–148. https://doi.org/10.1016/S0002-9440(10)65554-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bandyk, M. G., Pisters, L. L., Von Eshenbach, A. C., Chung, L. W. K., Zhao, L., Liang, J. C., et al. (1994). Trisomy 7: a potential cytogenetic marker of human prostate cancer progression. Genes, Chromosomes and Cancer, 9(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

  63. Zitzelsberger, H., Szücs, S., Weier, H. U., Lehmann, L., Braselmann, H., Enders, S., et al. (1994). Numerical abnormalities of chromosome 7 in human prostate cancer detected by fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections with centromere-specific dna probes. The Journal of Pathology, 172(4), 325–335.

    Article  CAS  PubMed  Google Scholar 

  64. Das, K., Lau, W., Sivaswaren, C., Ph, T., Fook-Chong, S., Sl, T., et al. (2005). Chromosomal changes in prostate cancer: a fluorescence in situ hybridization study. Clinical Genetics, 68(1), 40–47. https://doi.org/10.1111/j.1399-0004.2005.00452.x.

    Article  CAS  PubMed  Google Scholar 

  65. Alcaraz, A., Takahashi, S., Brown, J. A., Herath, J. F., Bergstralh, E. J., Larson-Keller, J. J., et al. (1994). Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Research, 54(15), 3998–4002.

    CAS  PubMed  Google Scholar 

  66. Konig, J. J., Teubel, W., Romijn, J. C., Schroder, F. H., & Hagemeijer, A. (1996). Gain and loss of chromosomes 1, 7, 8, 10, 18, and Y in 46 prostate cancers. Human Pathology, 27(7), 720–727.

    Article  CAS  PubMed  Google Scholar 

  67. Cohen, A. W., Hnasko, R., Schubert, W., & Lisanti, M. P. (2004). Role of caveolae and caveolins in health and disease. Physiological Reviews, 84(4), 1341–1379.

    Article  CAS  PubMed  Google Scholar 

  68. Haeusler, J., Hoegel, J., Bachmann, N., Herkommer, K., Paiss, T., Vogel, W., et al. (2005). Association of a CAV-1 haplotype to familial aggressive prostate cancer. The Prostate, 65(2), 171–177.

    Article  CAS  PubMed  Google Scholar 

  69. Cui, J., Rohr, L. R., Swanson, G., Speights, V., Maxwell, T., & Brothma, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. The Prostate, 46(3), 249–256.

    Article  CAS  PubMed  Google Scholar 

  70. Bachmann, N., Haeusler, J., Luedeke, M., Kuefer, R., Perner, S., Assum, G., et al. (2008). Expression changes of CAV1 and EZH2, located on 7q31∼q36, are rarely related to genomic alterations in primary prostate carcinoma. Cancer Genetics and Cytogenetics, 182(2), 103–110. https://doi.org/10.1016/j.cancergencyto.2008.01.006.

    Article  CAS  PubMed  Google Scholar 

  71. Woodson, K., Hanson, J., & Tangrea, J. (2004). A survey of gene-specific methylation in human prostate cancer among black and white men. Cancer Letters, 205(2), 181–188. https://doi.org/10.1016/j.canlet.2003.11.027.

    Article  CAS  PubMed  Google Scholar 

  72. Thompson, T. C., Tahir, S. A., Li, L., Watanabe, M., Naruishi, K., Yang, G., et al. (2010). The role of caveolin-1 in prostate cancer: clinical implications. Prostate Cancer and Prostatic Diseases, 13(1), 6–11. https://doi.org/10.1038/pcan.2009.29.

    Article  CAS  PubMed  Google Scholar 

  73. Tahir, S. A., Yang, G., Ebara, S., Timme, T. L., Satoh, T., Li, L., et al. (2001). Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Research, 61(10), 3882–3885.

    CAS  PubMed  Google Scholar 

  74. Satoh, T., Yang, G., Egawa, S., Addai, J., Frolov, A., Kuwao, S., et al. (2003). Caveolin-1 expression is a predictor of recurrence-free survival in pT2N0 prostate carcinoma diagnosed in Japanese patients. Cancer, 97(5), 1225–1233. https://doi.org/10.1002/cncr.11198.

    Article  CAS  PubMed  Google Scholar 

  75. Yang, G., Timme, T. L., Frolov, A., Wheeler, T. M., & Thompson, T. C. (2005). Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer, 103(6), 1186–1194. https://doi.org/10.1002/cncr.20905.

    Article  CAS  PubMed  Google Scholar 

  76. Moon, H., Lee, C. S., Inder, K. L., Sharma, S., Choi, E., Black, D. M., et al. (2014). PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene, 33(27), 3561–3570. https://doi.org/10.1038/onc.2013.315.

    Article  CAS  PubMed  Google Scholar 

  77. Nassar, Z. D., Moon, H., Duong, T., Neo, L., Hill, M. M., Francois, M., et al. (2013). PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget, 4(10), 1844–1855. https://doi.org/10.18632/oncotarget.1300.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sugie, S., Mukai, S., Yamasaki, K., Kamibeppu, T., Tsukino, H., & Kamoto, T. (2015). Significant association of caveolin-1 and caveolin-2 with prostate cancer progression. Cancer Genomics Proteomics, 12(6), 391–396.

    CAS  PubMed  Google Scholar 

  79. Liu, P., Li, W. P., Machleidt, T., & Anderson, R. G. (1999). Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biology, 1(6), 369–375. https://doi.org/10.1038/14067.

    Article  CAS  PubMed  Google Scholar 

  80. Burden, H. P., Holmes, C. H., Persad, R., & Whittington, K. (2005). Prostasomes—their effects on human male reproduction and fertility. Human Reproduction Update, 12(3), 283–292. https://doi.org/10.1093/humupd/dmi052.

    Article  PubMed  Google Scholar 

  81. Llorente, A., de Marco, M. C., & Alonso, M. A. (2004). Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. Journal of Cell Science, 117(Pt 22), 5343–5351. https://doi.org/10.1242/jcs.01420.

    Article  CAS  PubMed  Google Scholar 

  82. Bartz, R., Zhou, J., Hsieh, J.-T., Ying, Y., Li, W., & Liu, P. (2008). Caveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivo. International Journal of Cancer, 122(3), 520–525. https://doi.org/10.1002/ijc.23142.

    Article  CAS  PubMed  Google Scholar 

  83. Di Vizio, D., Morello, M., Dudley, A. C., Schow, P. W., Adam, R. M., Morley, S., et al. (2012). Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. The American Journal of Pathology, 181(5), 1573–1584. https://doi.org/10.1016/j.ajpath.2012.07.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin, C. J., Yun, E. J., Lo, U. G., Tai, Y. L., Deng, S., Hernandez, E., et al. (2019). The paracrine induction of prostate cancer progression by caveolin-1. Cell Death & Disease, 10(11), 834. https://doi.org/10.1038/s41419-019-2066-3.

    Article  CAS  Google Scholar 

  85. Tahir, S. A., Ren, C., Timme, T. L., Gdor, Y., Hoogeveen, R., Morrisett, J. D., et al. (2003). Development of an immunoassay for serum caveolin-1 a novel biomarker for prostate cancer. Clinical Cancer Research, 9(10), 3653–3659.

    CAS  PubMed  Google Scholar 

  86. Tahir, S. A., Kurosaka, S., Tanimoto, R., Goltsov, A. A., Park, S., & Thompson, T. C. (2013). Serum caveolin-1, a biomarker of drug response and therapeutic target in prostate cancer models. Cancer Biology & Therapy, 14(2), 117–126. https://doi.org/10.4161/cbt.22633.

    Article  CAS  Google Scholar 

  87. Tahir, S. A., Frolov, A., Hayes, T. G., Mims, M. P., Miles, B. J., Lerner, S. P., et al. (2006). Preoperative serum caveolin-1 as a prognostic marker for recurrence in a radical prostatectomy cohort. Clinical Cancer Research, 12(16), 4872–4875.

    Article  CAS  PubMed  Google Scholar 

  88. Sugie, S., Mukai, S., Tsukino, H., Toda, Y., Yamauchi, T., Nishikata, I., et al. (2013). Increased plasma caveolin-1 levels are associated with progression of prostate cancer among Japanese men. Anticancer Research, 33(5), 1893–1897.

    CAS  PubMed  Google Scholar 

  89. Yang, G., Addai, J., Wheeler, T. M., Frolov, A., Miles, B. J., Kadmon, D., et al. (2007). Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Human Pathology, 38(11), 1688–1695. https://doi.org/10.1016/j.humpath.2007.03.024.

    Article  CAS  PubMed  Google Scholar 

  90. Mathieu, R., Klatte, T., Lucca, I., Mbeutcha, A., Seitz, C., Karakiewicz, P. I., et al. (2016). Prognostic value of caveolin-1 in patients treated with radical prostatectomy: a multicentric validation study. BJU International, 118(2), 243–249. https://doi.org/10.1111/bju.13224.

    Article  CAS  PubMed  Google Scholar 

  91. Yang, G., Truong, L. D., Timme, T. L., Ren, C., Wheeler, T. M., Park, S. H., et al. (1998). Elevated expression of caveolin is associated with prostate and breast cancer. Clinical Cancer Research, 4(8), 1873–1880.

    CAS  PubMed  Google Scholar 

  92. Yang, G., Truong, L. D., Wheeler, T. M., & Thompson, T. C. (1999). Caveolin-1 expression in clinically confined human prostate cancer. Cancer Research, 59(22), 5719.

    CAS  PubMed  Google Scholar 

  93. Liu, J. M., Cheng, S. H., Liu, X. X., Xia, C., Wang, W. W., & Ma, X. L. (2015). Prognostic value of caveolin-1 in genitourinary cancer: a meta-analysis. International Journal of Clinical and Experimental Medicine, 8(11), 20760–20768.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Basourakos, S. P., Davis, J. W., Chapin, B. F., Ward, J. F., Pettaway, C. A., Pisters, L. L., et al. (2018). Baseline and longitudinal plasma caveolin-1 level as a biomarker in active surveillance for early-stage prostate cancer. BJU International, 121(1), 69–76. https://doi.org/10.1111/bju.13963.

    Article  CAS  PubMed  Google Scholar 

  95. Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: a dynamic niche in cancer progression. The Journal of Cell Biology, 196(4), 395–406. https://doi.org/10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine, 4(1), 38. https://doi.org/10.1186/1741-7015-4-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906. https://doi.org/10.1016/j.cell.2009.10.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Egeblad, M., Nakasone, E. S., & Werb, Z. (2010). Tumors as organs: complex tissues that interface with the entire organism. Developmental Cell, 18(6), 884–901. https://doi.org/10.1016/j.devcel.2010.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bremnes, R. M., Donnem, T., Al-Saad, S., Al-Shibli, K., Andersen, S., Sirera, R., et al. (2011). The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. Journal of Thoracic Oncology, 6(1), 209–217. https://doi.org/10.1097/JTO.0b013e3181f8a1bd.

    Article  PubMed  Google Scholar 

  100. Di Vizio, D., Morello, M., Sotgia, F., Pestell, R. G., Freeman, M. R., & Lisanti, M. P. (2009). An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle, 8(15), 2420–2424. https://doi.org/10.4161/cc.8.15.9116.

    Article  PubMed  Google Scholar 

  101. Giatromanolaki, A., Koukourakis, M. I., Koutsopoulos, A., Mendrinos, S., & Sivridis, E. (2012). The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biology & Therapy, 13(13), 1284–1289. https://doi.org/10.4161/cbt.21785.

    Article  Google Scholar 

  102. Panic, A., Ketteler, J., Reis, H., Sak, A., Herskind, C., Maier, P., et al. (2017). Progression-related loss of stromal caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance. Scientific Reports, 7, 41138. https://doi.org/10.1038/srep41138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu, J., Pan, C., Jiang, J., Deng, M., Gao, H., Men, B., et al. (2015). Six stroma-based RNA markers diagnostic for prostate cancer in European-Americans validated at the RNA and protein levels in patients in China. Oncotarget, 6(18), 16757–16765. https://doi.org/10.18632/oncotarget.4430.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ayala, G., Morello, M., Frolov, A., You, S., Li, R., Rosati, F., et al. (2013). Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. The Journal of Pathology, 231(1), 77–87. https://doi.org/10.1002/path.4217.

    Article  CAS  PubMed  Google Scholar 

  105. Hammarsten, P., Dahl Scherdin, T., Hagglof, C., Andersson, P., Wikstrom, P., Stattin, P., et al. (2016). High caveolin-1 expression in tumor stroma is associated with a favourable outcome in prostate cancer patients managed by watchful waiting. PLoS One, 11(10), e0164016. https://doi.org/10.1371/journal.pone.0164016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martinez-Outschoorn, U. E., Balliet, R. M., Rivadeneira, D. B., Chiavarina, B., Pavlides, S., Wang, C., et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 9(16), 3256–3276. https://doi.org/10.4161/cc.9.16.12553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Martinez-Outschoorn, U. E., Lin, Z., Trimmer, C., Flomenberg, N., Wang, C., Pavlides, S., et al. (2011). Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle, 10(15), 2504–2520. https://doi.org/10.4161/cc.10.15.16585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martinez-Outschoorn, U. E., Lisanti, M. P., & Sotgia, F. (2014). Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Seminars in Cancer Biology, 25, 47–60. https://doi.org/10.1016/j.semcancer.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  109. Ketteler, J., Panic, A., Reis, H., Wittka, A., Maier, P., Herskind, C., et al. (2019). Progression-related loss of stromal caveolin 1 levels mediates radiation resistance in prostate carcinoma via the apoptosis inhibitor TRIAP1. Journal of Clinical Medicine, 8(3). https://doi.org/10.3390/jcm8030348.

  110. Mostaghel, E. A. (2013). Steroid hormone synthetic pathways in prostate cancer. Translational Andrology and Urology, 2(3), 212–227. https://doi.org/10.3978/j.issn.2223-4683.2013.09.16.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lu, M. L., Schneider, M. C., Zheng, Y., Zhang, X., & Richie, J. P. (2001). Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. The Journal of Biological Chemistry, 276(16), 13442–13451. https://doi.org/10.1074/jbc.M006598200.

    Article  CAS  PubMed  Google Scholar 

  112. Bennett, N. C., Hooper, J. D., Johnson, D. W., & Gobe, G. C. (2014). Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines. Prostate, 74(5), 478–487. https://doi.org/10.1002/pros.22767.

    Article  CAS  PubMed  Google Scholar 

  113. Pflug, B. R., Reiter, R. E., & Nelson, J. B. (1999). Caveolin expression is decreased following androgen deprivation in human prostate cancer cell lines. Prostate, 40(4), 269–273. https://doi.org/10.1002/(sici)1097-0045(19990901)40:4<269::aid-pros9>3.0.co;2-6.

    Article  CAS  PubMed  Google Scholar 

  114. Li, L., Yang, G., Ebara, S., Satoh, T., Nasu, Y., Timme, T. L., et al. (2001). Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Research, 61(11), 4386–4392.

    CAS  PubMed  Google Scholar 

  115. Bryant, K. G., Camacho, J., Jasmin, J. F., Wang, C., Addya, S., Casimiro, M. C., et al. (2011). Caveolin-1 overexpression enhances androgen-dependent growth and proliferation in the mouse prostate. The International Journal of Biochemistry & Cell Biology, 43(9), 1318–1329. https://doi.org/10.1016/j.biocel.2011.04.019.

    Article  CAS  Google Scholar 

  116. Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23(24), 9389–9404. https://doi.org/10.1128/mcb.23.24.9389-9404.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nasu, Y., Timme, T. L., Yang, G., Bangma, C. H., Li, L., Ren, C., et al. (1998). Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nature Medicine, 4(9), 1062–1064. https://doi.org/10.1038/2048.

    Article  CAS  PubMed  Google Scholar 

  118. Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W., et al. (2019). Simvastatin delays castrationresistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin1. International Journal of Oncology, 54(6), 2054–2068. https://doi.org/10.3892/ijo.2019.4774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mouraviev, V., Li, L., Tahir, S. A., Yang, G., Timme, T. M., Goltsov, A., et al. (2002). The role of caveolin-1 in androgen insensitive prostate cancer. The Journal of Urology, 168(4 Pt 1), 1589–1596. https://doi.org/10.1097/01.ju.0000030164.80605.b9.

    Article  CAS  PubMed  Google Scholar 

  120. Rajan, P., Sudbery, I. M., Villasevil, M. E. M., Mui, E., Fleming, J., Davis, M., et al. (2014). Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. European Urology, 66(1), 32–39. https://doi.org/10.1016/j.eururo.2013.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Watanabe, M., Yang, G., Cao, G., Tahir, S. A., Naruishi, K., Tabata, K.-I., et al. (2009). Functional analysis of secreted caveolin-1 in mouse models of prostate cancer progression. Molecular Cancer Research, 7(9), 1446–1455. https://doi.org/10.1158/1541-7786.mcr-09-0071.

    Article  CAS  PubMed  Google Scholar 

  122. Tahir, S. A., Yang, G., Goltsov, A. A., Watanabe, M., Tabata, K., Addai, J., et al. (2008). Tumor cell-secreted caveolin-1 has proangiogenic activities in prostate cancer. Cancer Research, 68(3), 731–739. https://doi.org/10.1158/0008-5472.CAN-07-2668.

    Article  CAS  PubMed  Google Scholar 

  123. Ayala, G. E., Dai, H., Tahir, S. A., Li, R., Timme, T., Ittmann, M., et al. (2006). Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Research, 66(10), 5159–5164. https://doi.org/10.1158/0008-5472.can-05-1847.

    Article  CAS  PubMed  Google Scholar 

  124. Tahir, S. A., Park, S., & Thompson, T. C. (2009). Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biology & Therapy, 8(23), 2286.

    Article  Google Scholar 

  125. Timme, T. L., Goltsov, A., Tahir, S., Likun, L., Jianxiang, W., Chengzhen, R., et al. (2000). Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene, 19(29), 3256–3265.

    Article  CAS  PubMed  Google Scholar 

  126. Williams, T. M., Hassan, G. S., Li, J., Cohen, A. W., Medina, F., Frank, P. G., et al. (2005). Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer. The Journal of Biological Chemistry, 280(26), 25134.

    Article  CAS  PubMed  Google Scholar 

  127. Li, L., Ren, C., Yang, G., Goltsov, A. A., Tabata, K.-I., & Thompson, T. C. (2009). Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Molecular Cancer Research, 7(11), 1781–1791. https://doi.org/10.1158/1541-7786.mcr-09-0255.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, X., Ling, M. T., Wang, Q., Lau, C. K., Leung, S. C., Lee, T. K., et al. (2007). Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. The Journal of Biological Chemistry, 282(46), 33284–33294. https://doi.org/10.1074/jbc.M705089200.

    Article  CAS  PubMed  Google Scholar 

  129. Kamibeppu, T., Yamasaki, K., Nakahara, K., Nagai, T., Terada, N., Tsukino, H., et al. (2018). Caveolin-1 and -2 regulate cell motility in castration-resistant prostate cancer. Research and Reports in Urology, 10, 135–144. https://doi.org/10.2147/rru.S173377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nassar, Z. D., Hill, M. M., Parton, R. G., Francois, M., & Parat, M. O. (2015). Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience, 2(7), 635–645.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Aboulaich, N., Chui, P. C., Asara, J. M., Flier, J. S., & Maratos-Flier, E. (2011). Polymerase I and transcript release factor regulates lipolysis via a phosphorylation-dependent mechanism. Diabetes, 60(3), 757–765. https://doi.org/10.2337/db10-0744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pol, A., Martin, S., Fernandez, M. A., Ferguson, C., Carozzi, A., Luetterforst, R., et al. (2003). Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Molecular Biology of the Cell, 15(1), 99–110. https://doi.org/10.1091/mbc.e03-06-0368.

    Article  PubMed  Google Scholar 

  133. Aboulaich, N., Örtegren, U., Vener, A. V., & Strålfors, P. (2006). Association and insulin regulated translocation of hormone-sensitive lipase with PTRF. Biochemical and Biophysical Research Communications, 350(3), 657–661. https://doi.org/10.1016/j.bbrc.2006.09.094.

    Article  CAS  PubMed  Google Scholar 

  134. Cao, H., Alston, L., Ruschman, J., & Hegele, R. A. (2008). Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids in Health and Disease, 7, 3. https://doi.org/10.1186/1476-511x-7-3.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kim, C. A., Delepine, M., Boutet, E., El Mourabit, H., Le Lay, S., Meier, M., et al. (2008). Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. The Journal of Clinical Endocrinology and Metabolism, 93(4), 1129–1134. https://doi.org/10.1210/jc.2007-1328.

    Article  CAS  PubMed  Google Scholar 

  136. Shastry, S., Delgado, M. R., Dirik, E., Turkmen, M., Agarwal, A. K., & Garg, A. (2010). Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. American Journal of Medical Genetics. Part A, 152a(9), 2245–2253. https://doi.org/10.1002/ajmg.a.33578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hayashi, Y. K., Matsuda, C., Ogawa, M., Goto, K., Tominaga, K., Mitsuhashi, S., et al. (2009). Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. The Journal of Clinical Investigation, 119(9), 2623–2633. https://doi.org/10.1172/jci38660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Asterholm, I. W., Mundy, D. I., Weng, J., Anderson, R. G., & Scherer, P. E. (2012). Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metabolism, 15(2), 171–185. https://doi.org/10.1016/j.cmet.2012.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fernandez-Rojo, M. A., Gongora, M., Fitzsimmons, R. L., Martel, N., Martin, S. D., Nixon, S. J., et al. (2013). Caveolin-1 is necessary for hepatic oxidative lipid metabolism: evidence for crosstalk between caveolin-1 and bile acid signaling. Cell Reports, 4(2), 238–247. https://doi.org/10.1016/j.celrep.2013.06.017.

    Article  CAS  PubMed  Google Scholar 

  140. Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., et al. (2012). Mitochondria-localized caveolin in adaptation to cellular stress and injury. The FASEB Journal, 26(11), 4637–4649. https://doi.org/10.1096/fj.12-215798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, Y. (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer and Prostatic Diseases, 9(3), 230–234. https://doi.org/10.1038/sj.pcan.4500879.

    Article  CAS  PubMed  Google Scholar 

  142. Mah, C. Y., Nassar, Z. D., Swinnen, J. V., & Butler, L. M. (2019). Lipogenic effects of androgen signaling in normal and malignant prostate. Asian Journal of Urology. https://doi.org/10.1016/j.ajur.2019.12.003.

  143. Zadra, G., Photopoulos, C., & Loda, M. (2013). The fat side of prostate cancer. Biochimica et Biophysica Acta, 1831(10), 1518–1532. https://doi.org/10.1016/j.bbalip.2013.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rossi, S., Graner, E., Febbo, P., Weinstein, L., Bhattacharya, N., Onody, T., et al. (2003). Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Molecular Cancer Research, 1(10), 707–715.

    CAS  PubMed  Google Scholar 

  145. Swinnen, J. V., Vanderhoydonc, F., Elgamal, A. A., Eelen, M., Vercaeren, I., Joniau, S., et al. (2000). Selective activation of the fatty acid synthesis pathway in human prostate cancer. International Journal of Cancer, 88(2), 176–179. https://doi.org/10.1002/1097-0215(20001015)88:2<176::aid-ijc5>3.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  146. Shurbaji, M. S., Kalbfleisch, J. H., & Thurmond, T. S. (1996). Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Human Pathology, 27(9), 917–921. https://doi.org/10.1016/s0046-8177(96)90218-x.

    Article  CAS  PubMed  Google Scholar 

  147. Boopathi, E., Gomes, C. M., Goldfarb, R., John, M., Srinivasan, V. G., Alanzi, J., et al. (2011). Transcriptional repression of caveolin-1 (CAV1) gene expression by GATA-6 in bladder smooth muscle hypertrophy in mice and human beings. The American Journal of Pathology, 178(5), 2236–2251. https://doi.org/10.1016/j.ajpath.2011.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cao, S., Fernandez-Zapico, M. E., Jin, D., Puri, V., Cook, T. A., Lerman, L. O., et al. (2005). KLF11-mediated repression antagonizes Sp1/sterol-responsive element-binding protein-induced transcriptional activation of caveolin-1 in response to cholesterol signaling. The Journal of Biological Chemistry, 280(3), 1901–1910. https://doi.org/10.1074/jbc.M407941200.

    Article  CAS  PubMed  Google Scholar 

  149. Bist, A., Fielding, P. E., & Fielding, C. J. (1997). Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 94(20), 10693–10698. https://doi.org/10.1073/pnas.94.20.10693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Di Vizio, D., Adam, R. M., Kim, J., Kim, R., Sotgia, F., Williams, T., et al. (2008). Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 7(14), 2257–2267. https://doi.org/10.4161/cc.7.14.6475.

    Article  CAS  PubMed  Google Scholar 

  151. Di Vizio, D., Sotgia, F., Williams, T. M., Hassan, G. S., Capozza, F., Frank, P. G., et al. (2007). Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biology & Therapy, 6(8), 1269–1274.

    Article  Google Scholar 

  152. Karantanos, T., Karanika, S., Wang, J., Yang, G., Dobashi, M., Park, S., et al. (2016). Caveolin-1 regulates hormone resistance through lipid synthesis, creating novel therapeutic opportunities for castration-resistant prostate cancer. Oncotarget, 7(29), 46321–46334. https://doi.org/10.18632/oncotarget.10113.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Watt, M. J., Clark, A. K., Selth, L. A., Haynes, V. R., Lister, N., Rebello, R., et al. (2019). Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 11(478). https://doi.org/10.1126/scitranslmed.aau5758.

  154. Mattern, H. M., Raikar, L. S., & Hardin, C. D. (2009). The effect of caveolin-1 (Cav-1) on fatty acid uptake and CD36 localization and lipotoxicity in vascular smooth muscle (VSM) cells. International Journal of Physiology, Pathophysiology and Pharmacology, 1(1), 1–14.

    CAS  PubMed  Google Scholar 

  155. Ring, A., Le Lay, S., Pohl, J., Verkade, P., & Stremmel, W. (2006). Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochimica et Biophysica Acta, 1761(4), 416–423. https://doi.org/10.1016/j.bbalip.2006.03.016.

    Article  CAS  PubMed  Google Scholar 

  156. Meshulam, T., Simard, J. R., Wharton, J., Hamilton, J. A., & Pilch, P. F. (2006). Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry, 45(9), 2882–2893. https://doi.org/10.1021/bi051999b.

    Article  CAS  PubMed  Google Scholar 

  157. Simard, J. R., Meshulam, T., Pillai, B. K., Kirber, M. T., Brunaldi, K., Xu, S., et al. (2010). Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. Journal of Lipid Research, 51(5), 914–922. https://doi.org/10.1194/jlr.M900251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ding, S.-Y., Lee, M.-J., Summer, R., Liu, L., Fried, S. K., & Pilch, P. F. (2014). Pleiotropic effects of cavin-1 deficiency on lipid metabolism. The Journal of Biological Chemistry, 289(12), 8473–8483. https://doi.org/10.1074/jbc.M113.546242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tahir, S. A., Yang, G., Goltsov, A., Song, K.-D., Ren, C., Wang, J., et al. (2013). Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer. Cancer Research, 73(6), 1900–1911. https://doi.org/10.1158/0008-5472.CAN-12-3040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Flavin, R., Zadra, G., & Loda, M. (2011). Metabolic alterations and targeted therapies in prostate cancer. The Journal of Pathology, 223(2), 283–294. https://doi.org/10.1002/path.2809.

    Article  CAS  PubMed  Google Scholar 

  161. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. https://doi.org/10.1126/science.1160809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jansa, P., Mason, S. W., Hoffmann-Rohrer, U., & Grummt, I. (1998). Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. The EMBO Journal, 17(10), 2855–2864. https://doi.org/10.1093/emboj/17.10.2855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jansa, P., Burek, C., Sander, E. E., & Grummt, I. (2001). The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I. Nucleic Acids Research, 29(2), 423–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jansa, P., & Grummt, I. (1999). Mechanism of transcription termination: PTRF interacts with the largest subunit of RNA polymerase I and dissociates paused transcription complexes from yeast and mouse. Molecular and General Genetics MGG, 262(3), 508–514.

    Article  CAS  PubMed  Google Scholar 

  165. Vinten, J., Johnsen, A., Roepstorff, P., Harpøth, J., & Tranum-Jensen, J. (2005). Identification of a major protein on the cytosolic face of caveolae. Biochimica et Biophysica Acta, Biomembranes, 1717(1), 34–40.

    Article  CAS  Google Scholar 

  166. Liu, L., & Pilch, P. F. (2008). A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. The Journal of Biological Chemistry, 283(7), 4314–4322.

    Article  CAS  PubMed  Google Scholar 

  167. Liu, L., & Pilch, P. F. (2016). PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. Elife, 5. https://doi.org/10.7554/eLife.17508.

  168. McMahon, K.-A., Wu, Y., Gambin, Y., Sierecki, E., Tillu, V. A., Hall, T., et al. (2019). Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nature Communications, 10(1), 3279. https://doi.org/10.1038/s41467-019-11111-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sinha, B., Koster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., et al. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413. https://doi.org/10.1016/j.cell.2010.12.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gambin, Y., Ariotti, N., McMahon, K. A., Bastiani, M., Sierecki, E., Kovtun, O., et al. (2013). Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. Elife, 3, e01434. https://doi.org/10.7554/eLife.01434.

    Article  PubMed  Google Scholar 

  171. Aung, C. S., Hill, M. M., Bastiani, M., Parton, R. G., & Parat, M. O. (2011). PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. European Journal of Cell Biology, 90(2-3), 136–142. https://doi.org/10.1016/j.ejcb.2010.06.004.

    Article  CAS  PubMed  Google Scholar 

  172. Hill, M. M., Daud, N. H., Aung, C. S., Loo, D., Martin, S., Murphy, S., et al. (2012). Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1. PLoS One, 7(8), e43041. https://doi.org/10.1371/journal.pone.0043041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Inder, K. L., Zheng, Y. Z., Davis, M. J., Moon, H., Loo, D., Nguyen, H., et al. (2012). Expression of PTRF in PC-3 cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways. Molecular & Cellular Proteomics, 11(2), M111.012245. https://doi.org/10.1074/mcp.M111.012245.

    Article  CAS  Google Scholar 

  174. Inder, K. L., Ruelcke, J. E., Petelin, L., Moon, H., Choi, E., Rae, J., et al. (2014). Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. Journal of Extracellular Vesicles, 3. https://doi.org/10.3402/jev.v3.23784.

  175. Ni, Y., Hao, J., Hou, X., Du, W., Yu, Y., Chen, T., et al. (2018). Dephosphorylated polymerase I and transcript release factor prevents allergic asthma exacerbations by limiting IL-33 release.  Frontiers in Immunology, 9(1422). https://doi.org/10.3389/fimmu.2018.01422.

  176. Bai, L., Deng, X., Li, J., Wang, M., Li, Q., An, W., et al. (2011). Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1. Cell Research, 21(7), 1088–1101. https://doi.org/10.1038/cr.2011.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Aboulaich, N., Vainonen, J. P., Stralfors, P., & Vener, A. V. (2004). Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. The Biochemical Journal, 383(Pt 2), 237–248. https://doi.org/10.1042/bj20040647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wei, Z., Zou, X., Wang, H., Lei, J., Wu, Y., & Liao, K. (2015). The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association. Biochemical and Biophysical Research Communications, 456(3), 750–756. https://doi.org/10.1016/j.bbrc.2014.12.035.

    Article  CAS  PubMed  Google Scholar 

  179. Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., & Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10339–10343. https://doi.org/10.1073/pnas.92.22.10339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hailstones, D., Sleer, L. S., Parton, R. G., & Stanley, K. K. (1998). Regulation of caveolin and caveolae by cholesterol in MDCK cells. Journal of Lipid Research, 39(2), 369–379.

  181. Rothberg, K. G., Ying, Y. S., Kamen, B. A., & Anderson, R. G. W. (1990). Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. Journal of Cell Biology, 111(6 II), 2931–2938. https://doi.org/10.1083/jcb.111.6.2931.

  182. Breen, M. R., Camps, M., Carvalho-Simoes, F., Zorzano, A., & Pilch, P. F. (2012). Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion. PLoS One, 7(4), e34516. https://doi.org/10.1371/journal.pone.0034516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kowalska, K., Habrowska-Gorczynska, D. E., Neumayer, C., Bolliger, M., Domenig, C., Piastowska-Ciesielska, A. W., et al. (2018). Lower levels of Caveolin-1 and higher levels of endothelial nitric oxide synthase are observed in abdominal aortic aneurysm patients treated with simvastatin. Acta Biochimica Polonica, 65(1), 111–118. https://doi.org/10.18388/abp.2017_2305.

    Article  CAS  PubMed  Google Scholar 

  184. Moon, H., Ruelcke, J. E., Choi, E., Sharpe, L. J., Nassar, Z. D., Bielefeldt-Ohmann, H., et al. (2015). Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget, 6(10), 7438–7453. https://doi.org/10.18632/oncotarget.3476.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Piastowska-Ciesielska, A. W., Kozłowski, M., Wagner, W., Domińska, K., & Ochędalski, T. (2013). Effect of an angiotensin II type 1 receptor blocker on caveolin-1 expression in prostate cancer cells. Archives of Medical Science. AMS, 9(4), 739–744. https://doi.org/10.5114/aoms.2012.30955.

    Article  CAS  PubMed  Google Scholar 

  186. Iguchi, K., Matsunaga, S., Nakano, T., Usui, S., & Hirano, K. (2006). Inhibition of caveolin-1 expression by incadronate in PC-3 prostate cells. Anticancer Research, 26(4b), 2977–2981.

    CAS  PubMed  Google Scholar 

  187. Goh, M., Chen, F., Paulsen, M. T., Yeager, A. M., Dyer, E. S., & Ljungman, M. (2001). Phenylbutyrate attenuates the expression of Bcl-X(L), DNA-PK, caveolin-1, and VEGF in prostate cancer cells. Neoplasia, 3(4), 331–338. https://doi.org/10.1038/sj.neo.7900165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Guo, Z., Hu, X., Xing, Z., Xing, R., Lv, R., Cheng, X., et al. (2015). Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway. Molecular and Cellular Biochemistry, 406(1-2), 111–119. https://doi.org/10.1007/s11010-015-2429-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hirsch, G. E., Parisi, M. M., Martins, L. A., Andrade, C. M., Barbe-Tuana, F. M., & Guma, F. T. (2015). gamma-Oryzanol reduces caveolin-1 and PCGEM1 expression, markers of aggressiveness in prostate cancer cell lines. Prostate, 75(8), 783–797. https://doi.org/10.1002/pros.22960.

    Article  CAS  PubMed  Google Scholar 

  190. Yuan, S., Wang, L., Chen, X., Fan, B., Yuan, Q., Zhang, H., et al. (2016). Triptolide inhibits the migration and invasion of human prostate cancer cells via Caveolin-1/CD147/MMPs pathway. Biomedicine & Pharmacotherapy, 84, 1776–1782. https://doi.org/10.1016/j.biopha.2016.10.104.

    Article  CAS  Google Scholar 

  191. Palozza, P., Sestito, R., Picci, N., Lanza, P., Monego, G., & Ranelletti, F. O. (2008). The sensitivity to beta-carotene growth-inhibitory and proapoptotic effects is regulated by caveolin-1 expression in human colon and prostate cancer cells. Carcinogenesis, 29(11), 2153–2161. https://doi.org/10.1093/carcin/bgn018.

    Article  CAS  PubMed  Google Scholar 

  192. Markham, A. (2019). Alpelisib: first global approval. Drugs, 79(11), 1249–1253. https://doi.org/10.1007/s40265-019-01161-6.

    Article  CAS  PubMed  Google Scholar 

  193. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.cd-12-0095.

    Article  PubMed  Google Scholar 

  194. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), l1. https://doi.org/10.1126/scisignal.2004088.

    Article  CAS  Google Scholar 

  195. Prensner, J. R., Iyer, M. K., Balbin, O. A., Dhanasekaran, S. M., Cao, Q., Brenner, J. C., et al. (2011). Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature Biotechnology, 29(8), 742–749. https://doi.org/10.1038/nbt.1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yang, G., Addai, J., Ittmann, M., Wheeler, T. M., & Thompson, T. C. (2000). Elevated caveolin-1 levels in African-American versus white-American prostate cancer. Clinical Cancer Research, 6(9), 3430–3433.

    CAS  PubMed  Google Scholar 

  197. Gumulec, J., Sochor, J., Hlavna, M., Sztalmachova, M., Krizkova, S., Babula, P., et al. (2012). Caveolin-1 as a potential high-risk prostate cancer biomarker. Oncology Reports, 27(3), 831–841. https://doi.org/10.3892/or.2011.1587.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

ZDN is supported by an Early Career Fellowship from the National Health and Medical Research Council of Australia (1138648), a John Mills Young Investigator Award from the Prostate Cancer Foundation of Australia (YI 1417), and the Cure Cancer Australia Priority-driven Collaborative Cancer Research Scheme (1164798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyad D. Nassar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar, Z.D., Parat, MO. Caveola-forming proteins and prostate cancer. Cancer Metastasis Rev 39, 415–433 (2020). https://doi.org/10.1007/s10555-020-09874-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09874-x

Keywords

Navigation