Skip to main content

Advertisement

Log in

Significance of MTA1 in the molecular characterization of osteosarcoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Osteosarcoma is the most common malignant bone tumor in children and characterized by aggressive biologic behavior of metastatic propensity to the lung. Change of treatment paradigm brings survival benefit; however, 5-year survival rate is still low in patients having metastastatic foci at diagnosis for a few decades. Metastasis-associated protein (MTA) family is a group of ubiquitously expressed coregulators, which influences on tumor invasiveness or metastasis. MTA1 has been investigated in various cancers including osteosarcoma, and its overexpression is associated with high-risk features of cancers. In this review, we described various molecular studies of osteosarcoma, especially associated with MTA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ottaviani, G., & Jaffe, N. (2009). The epidemiology of osteosarcoma. Cancer Treatment and Research, 152, 3–13.

    PubMed  Google Scholar 

  2. Mirabello, L., Troisi, R. J., & Savage, S. A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer, 115(7), 1531–1543.

    PubMed Central  PubMed  Google Scholar 

  3. Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29.

    Google Scholar 

  4. Hansen, M. F., Seton, M., & Merchant, A. (2006). Osteosarcoma in Paget’s disease of bone. Journal of Bone and Mineral Research, 21(Suppl 2), 58–63.

    Google Scholar 

  5. Ottaviani, G., & Jaffe, N. (2009). The etiology of osteosarcoma. Cancer Treatment and Research, 152, 15–32.

    PubMed  Google Scholar 

  6. Doganavsargil, B., Argin, M., Kececi, B., Sezak, M., Sanli, U. A., & Oztop, F. (2009). Secondary osteosarcoma arising in fibrous dysplasia, case report. Archives of Orthopaedic and Traumatic Surgery, 129(4), 439–444.

    Google Scholar 

  7. Carnevale, A., Lieberman, E., & Cardenas, R. (1997). Li-Fraumeni syndrome in pediatric patients with soft tissue sarcoma or osteosarcoma. Archives of Medical Research, 28(3), 383–386.

    CAS  PubMed  Google Scholar 

  8. Wang, L. L., Gannavarapu, A., Kozinetz, C. A., Levy, M. L., Lewis, R. A., Chintagumpala, M. M., et al. (2003). Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. Journal of the National Cancer Institute, 95(9), 669–674.

    CAS  PubMed  Google Scholar 

  9. Liu, J. J., Liu, S., Wang, J. G., Zhu, W., Hua, Y. Q., Sun, W., et al. (2013). Telangiectatic osteosarcoma: a review of literature. OncoTargets and Therapy, 6, 593–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. DeLaney, T. F., Park, L., Goldberg, S. I., Hug, E. B., Liebsch, N. J., Munzenrider, J. E., et al. (2005). Radiotherapy for local control of osteosarcoma. International Journal of Radiation Oncology, Biology, Physics, 61(2), 492–498.

    PubMed  Google Scholar 

  11. Davis, A. M., Bell, R. S., & Goodwin, P. J. (1994). Prognostic factors in osteosarcoma: a critical review. Journal of Clinical Oncology, 12(2), 423–431.

    CAS  PubMed  Google Scholar 

  12. Bieling, P., Rehan, N., Winkler, P., Helmke, K., Maas, R., Fuchs, N., et al. (1996). Tumor size and prognosis in aggressively treated osteosarcoma. Journal of Clinical Oncology, 14(3), 848–858.

    CAS  PubMed  Google Scholar 

  13. Bacci, G., Bertoni, F., Longhi, A., Ferrari, S., Forni, C., Biagini, R., et al. (2003). Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity. Histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor. Cancer, 97(12), 3068–3075.

    CAS  PubMed  Google Scholar 

  14. Lee, J. A., Kim, M. S., Kim, D. H., Lim, J. S., Yoo, J. Y., Koh, J. S., et al. (2008). Relative tumor burden predicts metastasis-free survival in pediatric osteosarcoma. Pediatric Blood & Cancer, 50(2), 195–200.

    Google Scholar 

  15. Bacci, G., Longhi, A., Versari, M., Mercuri, M., Briccoli, A., & Picci, P. (2006). Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer, 106(5), 1154–1161.

    PubMed  Google Scholar 

  16. Han, I., Oh, J. H., Na, Y. G., Moon, K. C., & Kim, H. S. (2008). Clinical outcome of parosteal osteosarcoma. Journal of Surgical Oncology, 97(2), 146–149.

    PubMed  Google Scholar 

  17. Revell, M. P., Deshmukh, N., Grimer, R. J., Carter, S. R., & Tillman, R. M. (2002). Periosteal osteosarcoma: a review of 17 cases with mean follow-up of 52 months. Sarcoma, 6(4), 123–130.

    PubMed Central  PubMed  Google Scholar 

  18. Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical & Experimental Metastasis, 26(3), 215–227.

    CAS  Google Scholar 

  19. Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. (2012). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Research, 72(2), 387–394.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Martin, M. D., Fischbach, K., Osborne, C. K., Mohsin, S. K., Allred, D. C., & O’Connell, P. (2001). Loss of heterozygosity events impeding breast cancer metastasis contain the MTA1 gene. Cancer Research, 61(9), 3578–3580.

    CAS  PubMed  Google Scholar 

  21. Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.

    CAS  Google Scholar 

  22. Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.

    CAS  Google Scholar 

  23. Kidd, M., Modlin, I. M., Mane, S. M., Camp, R. L., Eick, G., & Latich, I. (2006). The role of genetic markers—NAP1L1, MAGE-D2, and MTA1—in defining small-intestinal carcinoid neoplasia. Annals of Surgical Oncology, 13(2), 253–262.

    PubMed  Google Scholar 

  24. Sasaki, H., Moriyama, S., Nakashima, Y., Kobayashi, Y., Yukiue, H., Kaji, M., et al. (2002). Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 35(2), 149–154.

    PubMed  Google Scholar 

  25. Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Bruning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biology & Therapy, 7(9), 1460–1467.

    CAS  Google Scholar 

  26. Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Research, 64(3), 825–829.

    CAS  PubMed  Google Scholar 

  27. Park, H. R., Jung, W. W., Kim, H. S., Bacchini, P., Bertoni, F., & Park, Y. K. (2005). Overexpression of metastatic tumor antigen in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma. Cancer Research and Treatment, 37(6), 360–364.

    PubMed Central  PubMed  Google Scholar 

  28. Ferrari, S., Smeland, S., Mercuri, M., Bertoni, F., Longhi, A., Ruggieri, P., et al. (2005). Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. Journal of Clinical Oncology, 23(34), 8845–8852.

    PubMed  Google Scholar 

  29. Ta, H. T., Dass, C. R., Choong, P. F., & Dunstan, D. E. (2009). Osteosarcoma treatment: state of the art. Cancer Metastasis Reviews, 28(1–2), 247–263.

    PubMed  Google Scholar 

  30. Briccoli, A., Rocca, M., Salone, M., Guzzardella, G. A., Balladelli, A., & Bacci, G. (2010). High grade osteosarcoma of the extremities metastatic to the lung: long-term results in 323 patients treated combining surgery and chemotherapy, 1985–2005. Surgical Oncology, 19(4), 193–199.

    PubMed  Google Scholar 

  31. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.

    CAS  PubMed  Google Scholar 

  32. Molli, P. R., Singh, R. R., Lee, S. W., & Kumar, R. (2008). MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene, 27(14), 1971–1980.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Yoo, Y. G., Na, T. Y., Seo, H. W., Seong, J. K., Park, C. K., Shin, Y. K., et al. (2008). Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene, 27(24), 3405–3413.

    CAS  PubMed  Google Scholar 

  34. Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Science, 97(5), 374–379.

    CAS  PubMed  Google Scholar 

  35. Li, S. H., Tian, H., Yue, W. M., Li, L., Li, W. J., Chen, Z. T., et al. (2011). Overexpression of metastasis-associated protein 1 is significantly correlated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Annals of Surgical Oncology, 18(7), 2048–2056.

    PubMed  Google Scholar 

  36. Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. (2011). Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate, 71(3), 268–280.

    CAS  PubMed  Google Scholar 

  37. Li, S. H., Tian, H., Yue, W. M., Li, L., Gao, C., Li, W. J., et al. (2012). Metastasis-associated protein 1 nuclear expression is closely associated with tumor progression and angiogenesis in patients with esophageal squamous cell cancer. World Journal of Surgery, 36(3), 623–631.

    CAS  PubMed  Google Scholar 

  38. Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World Journal of Surgery, 37(4), 792–798.

    PubMed  Google Scholar 

  39. Park, H. R., Cabrini, R. L., Araujo, E. S., Paparella, M. L., Brandizzi, D., & Park, Y. K. (2009). Expression of ezrin and metastatic tumor antigen in osteosarcomas of the jaw. Tumori, 95(1), 81–86.

    CAS  PubMed  Google Scholar 

  40. Choi, K. S., Bae, M. K., Jeong, J. W., Moon, H. E., & Kim, K. W. (2003). Hypoxia-induced angiogenesis during carcinogenesis. Journal of Biochemistry and Molecular Biology, 36(1), 120–127.

    CAS  PubMed  Google Scholar 

  41. Ito, T. K., Ishii, G., Chiba, H., & Ochiai, A. (2007). The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells. Oncogene, 26(51), 7194–7203.

    CAS  PubMed  Google Scholar 

  42. Figueras, A., Arbos, M. A., Quiles, M. T., Vinals, F., Germa, J. R., & Capella, G. (2013). The impact of KRAS mutations on VEGF-A production and tumour vascular network. BMC Cancer, 13, 125.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79(2), 315–328.

    PubMed  Google Scholar 

  44. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(2), 277–285.

    PubMed  Google Scholar 

  45. Tsuchida, R., Osawa, T., Wang, F., Nishii, R., Das, B., Tsuchida, S., et al. (2014). BMP4/Thrombospondin-1 loop paracrinically inhibits tumor angiogenesis and suppresses the growth of solid tumors. Oncogene, 33(29), 3803–3811.

    CAS  PubMed  Google Scholar 

  46. Kim, H. S., Lim, S. J., & Park, Y. K. (2009). Anti-angiogenic factor endostatin in osteosarcoma. APMIS, 117(10), 716–723.

    PubMed  Google Scholar 

  47. Lammli, J., Fan, M., Rosenthal, H. G., Patni, M., Rinehart, E., Vergara, G., et al. (2012). Expression of vascular endothelial growth factor correlates with the advance of clinical osteosarcoma. International Orthopaedics, 36(11), 2307–2313.

    PubMed Central  PubMed  Google Scholar 

  48. Rastogi, S., Kumar, R., Sankineani, S. R., Marimuthu, K., Rijal, L., Prakash, S., et al. (2012). Role of vascular endothelial growth factor as a tumour marker in osteosarcoma: a prospective study. International Orthopaedics, 36(11), 2315–2321.

    PubMed Central  PubMed  Google Scholar 

  49. Roncuzzi, L., Pancotti, F., & Baldini, N. (2014). Involvement of HIF-1alpha activation in the doxorubicin resistance of human osteosarcoma cells. Oncology Reports, 32(1), 389–394.

    CAS  PubMed  Google Scholar 

  50. Yang, Q. C., Zeng, B. F., Dong, Y., Shi, Z. M., Jiang, Z. M., & Huang, J. (2007). Overexpression of hypoxia-inducible factor-1alpha in human osteosarcoma: correlation with clinicopathological parameters and survival outcome. Japanese Journal of Clinical Oncology, 37(2), 127–134.

    PubMed  Google Scholar 

  51. Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO Journal, 25(6), 1231–1241.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.

    CAS  PubMed  Google Scholar 

  53. Birner, P., Schindl, M., Obermair, A., Breitenecker, G., & Oberhuber, G. (2001). Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clinical Cancer Research, 7(6), 1661–1668.

    CAS  PubMed  Google Scholar 

  54. Schindl, M., Schoppmann, S. F., Samonigg, H., Hausmaninger, H., Kwasny, W., Gnant, M., et al. (2002). Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clinical Cancer Research, 8(6), 1831–1837.

    CAS  PubMed  Google Scholar 

  55. Shibaji, T., Nagao, M., Ikeda, N., Kanehiro, H., Hisanaga, M., Ko, S., et al. (2003). Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Research, 23(6C), 4721–4727.

    CAS  PubMed  Google Scholar 

  56. El Naggar, A., Clarkson, P., Zhang, F., Mathers, J., Tognon, C., & Sorensen, P. H. (2012). Expression and stability of hypoxia inducible factor 1alpha in osteosarcoma. Pediatric Blood & Cancer, 59(7), 1215–1222.

    Google Scholar 

  57. Chen, Y., Yang, Y., Yuan, Z., Wang, C., & Shi, Y. (2012). Predicting chemosensitivity in osteosarcoma prior to chemotherapy: an investigational study of biomarkers with immunohistochemistry. Oncology Letters, 3(5), 1011–1016.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. McMahon, G. (2000). VEGF receptor signaling in tumor angiogenesis. The Oncologist, 5(Suppl 1), 3–10.

    CAS  PubMed  Google Scholar 

  59. Dong, G., Chen, Z., Li, Z. Y., Yeh, N. T., Bancroft, C. C., & Van Waes, C. (2001). Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Research, 61(15), 5911–5918.

    CAS  PubMed  Google Scholar 

  60. Yu, X. W., Wu, T. Y., Yi, X., Ren, W. P., Zhou, Z. B., Sun, Y. Q., et al. (2014). Prognostic significance of VEGF expression in osteosarcoma: a meta-analysis. Tumour Biology, 35(1), 155–160.

    CAS  PubMed  Google Scholar 

  61. Qu, J. T., Wang, M., He, H. L., Tang, Y., & Ye, X. J. (2012). The prognostic value of elevated vascular endothelial growth factor in patients with osteosarcoma: a meta-analysis and systemic review. Journal of Cancer Research and Clinical Oncology, 138(5), 819–825.

    CAS  PubMed  Google Scholar 

  62. Nagaraj, S. R., Shilpa, P., Rachaiah, K., & Salimath, B. P. (2013). Crosstalk between VEGF and MTA1 signaling pathways contribute to aggressiveness of breast carcinoma. Molecular Carcinogenesis. doi:10.1002/mc.22104.

    PubMed  Google Scholar 

  63. Garcia, A., & Kandel, J. J. (2012). Notch: a key regulator of tumor angiogenesis and metastasis. Histology and Histopathology, 27(2), 151–156.

    PubMed Central  PubMed  Google Scholar 

  64. Hughes, D. P. (2009). How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treatment and Research, 152, 479–496.

    PubMed  Google Scholar 

  65. Mu, X., Isaac, C., Greco, N., Huard, J., & Weiss, K. (2013). Notch signaling is associated with ALDH activity and an aggressive metastatic phenotype in murine osteosarcoma cells. Frontiers in Oncology, 3, 143.

    PubMed Central  PubMed  Google Scholar 

  66. Won, K. Y., Kim, Y. W., Kim, H. S., Lee, S. K., Jung, W. W., & Park, Y. K. (2013). MicroRNA-199b-5p is involved in the Notch signaling pathway in osteosarcoma. Human Pathology, 44(8), 1648–1655.

    CAS  PubMed  Google Scholar 

  67. Morley, M. E., Riches, K., Peers, C., & Porter, K. E. (2007). Hypoxic inhibition of human cardiac fibroblast invasion and MMP-2 activation may impair adaptive myocardial remodelling. Biochemical Society Transactions, 35(Pt 5), 905–907.

    CAS  PubMed  Google Scholar 

  68. Jodele, S., Blavier, L., Yoon, J. M., & DeClerck, Y. A. (2006). Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Reviews, 25(1), 35–43.

    CAS  PubMed  Google Scholar 

  69. Wang, G., Wang, W., Zhou, J., & Yang, X. (2013). Correlation between telomerase activity and matrix metalloproteinases 2 expression in gastric cancer. Cancer Biomarkers, 13(1), 21–28.

    CAS  PubMed  Google Scholar 

  70. Zhao, S., Ma, W., Zhang, M., Tang, D., Shi, Q., Xu, S., et al. (2013). High expression of CD147 and MMP-9 is correlated with poor prognosis of triple-negative breast cancer (TNBC) patients. Medical Oncology, 30(1), 335.

    PubMed Central  PubMed  Google Scholar 

  71. Jiang, Q., Zhang, H., & Zhang, P. (2011). ShRNA-mediated gene silencing of MTA1 influenced on protein expression of ER alpha, MMP-9, CyclinD1 and invasiveness, proliferation in breast cancer cell lines MDA-MB-231 and MCF-7 in vitro. Journal of Experimental & Clinical Cancer Research, 30, 60.

    CAS  Google Scholar 

  72. Weng, W., Yin, J., Zhang, Y., Qiu, J., & Wang, X. (2014). Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. International Journal of Oncology, 44(3), 812–818.

    CAS  PubMed  Google Scholar 

  73. Wen, X., Liu, H., Yu, K., & Liu, Y. (2014). Matrix metalloproteinase 2 expression and survival of patients with osteosarcoma: a meta-analysis. Tumour Biology, 35(1), 845–848.

    CAS  PubMed  Google Scholar 

  74. Li, H., Zhang, K., Liu, L. H., Ouyang, Y., Bu, J., Guo, H. B., et al. (2014). A systematic review of matrix metalloproteinase 9 as a biomarker of survival in patients with osteosarcoma. Tumour Biology, 35(6), 5487–5491.

    CAS  PubMed  Google Scholar 

  75. Jin, J., Cai, L., Liu, Z. M., & Zhou, X. S. (2013). miRNA-218 inhibits osteosarcoma cell migration and invasion by down-regulating of TIAM1, MMP2 and MMP9. Asian Pacific Journal of Cancer Prevention, 14(6), 3681–3684.

    PubMed  Google Scholar 

  76. Husmann, K., Arlt, M. J., Muff, R., Langsam, B., Bertz, J., Born, W., et al. (2013). Matrix metalloproteinase 1 promotes tumor formation and lung metastasis in an intratibial injection osteosarcoma mouse model. Biochimica et Biophysica Acta, 1832(2), 347–354.

    CAS  PubMed  Google Scholar 

  77. Decock, J., Long, J. R., Laxton, R. C., Shu, X. O., Hodgkinson, C., Hendrickx, W., et al. (2007). Association of matrix metalloproteinase-8 gene variation with breast cancer prognosis. Cancer Research, 67(21), 10214–10221.

    CAS  PubMed  Google Scholar 

  78. Balbin, M., Fueyo, A., Tester, A. M., Pendas, A. M., Pitiot, A. S., Astudillo, A., et al. (2003). Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genetics, 35(3), 252–257.

    CAS  PubMed  Google Scholar 

  79. Korpi, J. T., Hagstrom, J., Lehtonen, N., Parkkinen, J., Sorsa, T., Salo, T., et al. (2011). Expression of matrix metalloproteinases-2, −8, −13, −26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma. Surgical Oncology, 20(1), e18–e22.

    PubMed  Google Scholar 

  80. Cai, Y., Cai, T., & Chen, Y. (2014). Wnt pathway in osteosarcoma, from oncogenic to therapeutic. Journal of Cellular Biochemistry, 115(4), 625–631.

    CAS  PubMed  Google Scholar 

  81. Kumar, R., Balasenthil, S., Pakala, S. B., Rayala, S. K., Sahin, A. A., & Ohshiro, K. (2010). Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Research, 70(16), 6598–6608.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Yan, D., Avtanski, D., Saxena, N. K., & Sharma, D. (2012). Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. Journal of Biological Chemistry, 287(11), 8598–8612.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Lu, Y., Wei, C., & Xi, Z. (2014). Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/beta-catenin pathway. In Vitro Cellular & Developmental Biology. Animal. doi:10.1007/s11626-014-9779-5.

    Google Scholar 

  84. Guo, Y., Rubin, E. M., Xie, J., Zi, X., & Hoang, B. H. (2008). Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clinical Orthopaedics and Related Research, 466(9), 2039–2045.

    PubMed Central  PubMed  Google Scholar 

  85. Guo, Y., Zi, X., Koontz, Z., Kim, A., Xie, J., Gorlick, R., et al. (2007). Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. Journal of Orthopaedic Research, 25(7), 964–971.

    CAS  PubMed  Google Scholar 

  86. Ma, Y., Ren, Y., Han, E. Q., Li, H., Chen, D., Jacobs, J. J., et al. (2013). Inhibition of the Wnt-beta-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochemical and Biophysical Research Communications, 431(2), 274–279.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yang, G., Yuan, J., & Li, K. (2013). EMT transcription factors: implication in osteosarcoma. Medical Oncology, 30(4), 697.

    PubMed  Google Scholar 

  88. Tuncay Cagatay, S., Cimen, I., Savas, B., & Banerjee, S. (2013). MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumour Biology, 34(2), 1189–1204.

    CAS  PubMed  Google Scholar 

  89. Yang, H., Zhang, Y., Zhou, Z., Jiang, X., & Shen, A. (2014). Transcription factor Snai1-1 induces osteosarcoma invasion and metastasis by inhibiting E-cadherin expression. Oncology Letters, 8(1), 193–197.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Sharili, A. S., Allen, S., Smith, K., Hargreaves, J., Price, J., & McGonnell, I. (2011). Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy. Tumour Biology, 32(3), 515–526.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Sharili, A. S., Allen, S., Smith, K., Price, J., & McGonnell, I. M. (2013). Snail2 promotes osteosarcoma cell motility through remodelling of the actin cytoskeleton and regulates tumor development. Cancer Letters, 333(2), 170–179.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Fan, L., Wang, H., Xia, X., Rao, Y., Ma, X., Ma, D., et al. (2012). Loss of E-cadherin promotes prostate cancer metastasis via upregulation of metastasis-associated gene 1 expression. Oncology Letters, 4(6), 1225–1233.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Wang, H., Fan, L., Wei, J., Weng, Y., Zhou, L., Shi, Y., et al. (2012). Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PloS One, 7(12), e46888.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Khan, M. A., Chen, H. C., Zhang, D., & Fu, J. (2013). Twist: a molecular target in cancer therapeutics. Tumour Biology, 34(5), 2497–2506.

    CAS  PubMed  Google Scholar 

  95. Zhou, Y., Zang, X., Huang, Z., & Zhang, C. (2013). TWIST interacts with endothelin-1/endothelin A receptor signaling in osteosarcoma cell survival against cisplatin. Oncology Letters, 5(3), 857–861.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wu, J., Liao, Q., He, H., Zhong, D., & Yin, K. (2014). TWIST interacts with beta-catenin signaling on osteosarcoma cell survival against cisplatin. Molecular Carcinogenesis, 53(6), 440–446.

    CAS  PubMed  Google Scholar 

  97. Zhou, Y., Huang, Z., Wu, S., Zang, X., Liu, M., & Shi, J. (2014). miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. Journal of Experimental & Clinical Cancer Research, 33, 12.

    Google Scholar 

  98. Yin, K., Liao, Q., He, H., & Zhong, D. (2012). Prognostic value of Twist and E-cadherin in patients with osteosarcoma. Medical Oncology, 29(5), 3449–3455.

    CAS  PubMed  Google Scholar 

  99. Egloff, A. M., & Grandis, J. R. (2008). Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer. Seminars in Oncology, 35(3), 286–297.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Mori, S., Ronnstrand, L., Yokote, K., Engstrom, A., Courtneidge, S. A., Claesson-Welsh, L., et al. (1993). Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO Journal, 12(6), 2257–2264.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23(48), 7928–7946.

    CAS  PubMed  Google Scholar 

  102. Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111(12), 5581–5591.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Brunton, V. G., & Frame, M. C. (2008). Src and focal adhesion kinase as therapeutic targets in cancer. Current Opinion in Pharmacology, 8(4), 427–432.

    CAS  PubMed  Google Scholar 

  104. Hingorani, P., Zhang, W., Gorlick, R., & Kolb, E. A. (2009). Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo. Clinical Cancer Research, 15(10), 3416–3422.

    CAS  PubMed  Google Scholar 

  105. Strauss, S. J., Ng, T., Mendoza-Naranjo, A., Whelan, J., & Sorensen, P. H. (2010). Understanding micrometastatic disease and Anoikis resistance in ewing family of tumors and osteosarcoma. The Oncologist, 15(6), 627–635.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. Journal of Cell Biology, 124(4), 619–626.

    CAS  PubMed  Google Scholar 

  107. Jost, M., Huggett, T. M., Kari, C., & Rodeck, U. (2001). Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Molecular Biology of the Cell, 12(5), 1519–1527.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Jost, M., Huggett, T. M., Kari, C., Boise, L. H., & Rodeck, U. (2001). Epidermal growth factor receptor-dependent control of keratinocyte survival and Bcl-xL expression through a MEK-dependent pathway. Journal of Biological Chemistry, 276(9), 6320–6326.

    CAS  PubMed  Google Scholar 

  109. Sakuma, Y., Yamazaki, Y., Nakamura, Y., Yoshihara, M., Matsukuma, S., Nakayama, H., et al. (2012). WZ4002, a third-generation EGFR inhibitor, can overcome anoikis resistance in EGFR-mutant lung adenocarcinomas more efficiently than Src inhibitors. Laboratory Investigation, 92(3), 371–383.

    CAS  PubMed  Google Scholar 

  110. Mahoney, M. G., Simpson, A., Jost, M., Noe, M., Kari, C., Pepe, D., et al. (2002). Metastasis-associated protein (MTA)1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene, 21(14), 2161–2170.

    CAS  PubMed  Google Scholar 

  111. Diaz-Montero, C. M., Wygant, J. N., & McIntyre, B. W. (2006). PI3-K/Akt-mediated anoikis resistance of human osteosarcoma cells requires Src activation. European Journal of Cancer, 42(10), 1491–1500.

    CAS  PubMed  Google Scholar 

  112. Cantiani, L., Manara, M. C., Zucchini, C., De Sanctis, P., Zuntini, M., Valvassori, L., et al. (2007). Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Research, 67(16), 7675–7685.

    CAS  PubMed  Google Scholar 

  113. Wan, X., Kim, S. Y., Guenther, L. M., Mendoza, A., Briggs, J., Yeung, C., et al. (2009). Beta4 integrin promotes osteosarcoma metastasis and interacts with ezrin. Oncogene, 28(38), 3401–3411.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Jeffree, G. M., Price, C. H., & Sissons, H. A. (1975). The metastatic patterns of osteosarcoma. British Journal of Cancer, 32(1), 87–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Laverdiere, C., Hoang, B. H., Yang, R., Sowers, R., Qin, J., Meyers, P. A., et al. (2005). Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clinical Cancer Research, 11(7), 2561–2567.

    CAS  PubMed  Google Scholar 

  116. Sun, X., Cheng, G., Hao, M., Zheng, J., Zhou, X., Zhang, J., et al. (2010). CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Reviews, 29(4), 709–722.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Reviews, 25(4), 521–529.

    PubMed  Google Scholar 

  118. Ando, K., Mori, K., Verrecchia, F., Marc, B., Redini, F., & Heymann, D. (2012). Molecular alterations associated with osteosarcoma development. Sarcoma, 2012, 523432.

    PubMed Central  PubMed  Google Scholar 

  119. Balkwill, F. (2004). Cancer and the chemokine network. Nature Reviews Cancer, 4(7), 540–550.

    CAS  PubMed  Google Scholar 

  120. Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86(12), 1221–1232.

    CAS  PubMed  Google Scholar 

  121. Brennecke, P., Arlt, M. J., Muff, R., Campanile, C., Gvozdenovic, A., Husmann, K., et al. (2013). Expression of the chemokine receptor CXCR7 in CXCR4-expressing human 143B osteosarcoma cells enhances lung metastasis of intratibial xenografts in SCID mice. PloS One, 8(9), e74045.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Brennecke, P., Arlt, M. J., Campanile, C., Husmann, K., Gvozdenovic, A., Apuzzo, T., et al. (2014). CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clinical & Experimental Metastasis, 31(3), 339–349.

    CAS  Google Scholar 

  123. Zhang, Y., Zhang, L., Zhang, G., Li, S., Duan, J., Cheng, J., et al. (2014). Osteosarcoma metastasis: prospective role of ezrin. Tumour Biology, 35(6), 5055–5059.

    CAS  PubMed  Google Scholar 

  124. Khanna, C., Wan, X., Bose, S., Cassaday, R., Olomu, O., Mendoza, A., et al. (2004). The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nature Medicine, 10(2), 182–186.

    CAS  PubMed  Google Scholar 

  125. Ferrari, S., Zanella, L., Alberghini, M., Palmerini, E., Staals, E., & Bacchini, P. (2008). Prognostic significance of immunohistochemical expression of ezrin in non-metastatic high-grade osteosarcoma. Pediatric Blood & Cancer, 50(4), 752–756.

    Google Scholar 

  126. Li, H., Min, D., Zhao, H., Wang, Z., Qi, W., Zheng, S., et al. (2013). The prognostic role of ezrin immunoexpression in osteosarcoma: a meta-analysis of published data. PloS One, 8(6), e64513.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Lun, D. X., Hu, Y. C., Xu, Z. W., Xu, L. N., & Wang, B. W. (2014). The prognostic value of elevated ezrin in patients with osteosarcoma. Tumour Biology, 35(2), 1263–1266.

    CAS  PubMed  Google Scholar 

  128. Zhu, J., Feng, Y., Ke, Z., Yang, Z., Zhou, J., Huang, X., et al. (2012). Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin. American Journal of Pathology, 180(6), 2440–2451.

    CAS  PubMed  Google Scholar 

  129. Mu, Y., Zhang, H., Che, L., & Li, K. (2014). Clinical significance of microRNA-183/Ezrin axis in judging the prognosis of patients with osteosarcoma. Medical Oncology, 31(2), 821.

    PubMed  Google Scholar 

  130. Li, D. Q., Divijendra Natha Reddy, S., Pakala, S. B., Wu, X., Zhang, Y., Rayala, S. K., et al. (2009). MTA1 coregulator regulates p53 stability and function. Journal of Biological Chemistry, 284(50), 34545–34552.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. Journal of Biological Chemistry, 285(13), 10044–10052.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Lee, M. H., Na, H., Kim, E. J., Lee, H. W., & Lee, M. O. (2012). Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1. Oncogene, 31(49), 5099–5107.

    CAS  PubMed  Google Scholar 

  133. Birch, J. M., Alston, R. D., McNally, R. J., Evans, D. G., Kelsey, A. M., Harris, M., et al. (2001). Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene, 20(34), 4621–4628.

    CAS  PubMed  Google Scholar 

  134. Gokgoz, N., Wunder, J. S., Mousses, S., Eskandarian, S., Bell, R. S., & Andrulis, I. L. (2001). Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma. Cancer, 92(8), 2181–2189.

    CAS  PubMed  Google Scholar 

  135. Tsuchiya, T., Sekine, K., Hinohara, S., Namiki, T., Nobori, T., & Kaneko, Y. (2000). Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genetics and Cytogenetics, 120(2), 91–98.

    CAS  PubMed  Google Scholar 

  136. Pakos, E. E., Kyzas, P. A., & Ioannidis, J. P. (2004). Prognostic significance of TP53 tumor suppressor gene expression and mutations in human osteosarcoma: a meta-analysis. Clinical Cancer Research, 10(18 Pt 1), 6208–6214.

    CAS  PubMed  Google Scholar 

  137. Jiang, L., Tao, C., & He, A. (2013). Prognostic significance of p53 expression in malignant bone tumors: a meta-analysis. Tumour Biology, 34(2), 1037–1043.

    CAS  PubMed  Google Scholar 

  138. Fu, H. L., Shao, L., Wang, Q., Jia, T., Li, M., & Yang, D. P. (2013). A systematic review of p53 as a biomarker of survival in patients with osteosarcoma. Tumour Biology, 34(6), 3817–3821.

    CAS  PubMed  Google Scholar 

  139. Florenes, V. A., Maelandsmo, G. M., Forus, A., Andreassen, A., Myklebost, O., & Fodstad, O. (1994). MDM2 gene amplification and transcript levels in human sarcomas: relationship to TP53 gene status. Journal of the National Cancer Institute, 86(17), 1297–1302.

    CAS  PubMed  Google Scholar 

  140. Miller, C. W., Aslo, A., Won, A., Tan, M., Lampkin, B., & Koeffler, H. P. (1996). Alterations of the p53, Rb and MDM2 genes in osteosarcoma. Journal of Cancer Research and Clinical Oncology, 122(9), 559–565.

    CAS  PubMed  Google Scholar 

  141. Mejia-Guerrero, S., Quejada, M., Gokgoz, N., Gill, M., Parkes, R. K., Wunder, J. S., et al. (2010). Characterization of the 12q15 MDM2 and 12q13-14 CDK4 amplicons and clinical correlations in osteosarcoma. Genes, Chromosomes & Cancer, 49(6), 518–525.

    CAS  Google Scholar 

  142. Wadayama, B., Toguchida, J., Shimizu, T., Ishizaki, K., Sasaki, M. S., Kotoura, Y., et al. (1994). Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Research, 54(11), 3042–3048.

    CAS  PubMed  Google Scholar 

  143. Eng, C., Li, F. P., Abramson, D. H., Ellsworth, R. M., Wong, F. L., Goldman, M. B., et al. (1993). Mortality from second tumors among long-term survivors of retinoblastoma. Journal of the National Cancer Institute, 85(14), 1121–1128.

    CAS  PubMed  Google Scholar 

  144. Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J., & Kouzarides, T. (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 391(6667), 597–601.

    CAS  PubMed  Google Scholar 

  145. Feugeas, O., Guriec, N., Babin-Boilletot, A., Marcellin, L., Simon, P., Babin, S., et al. (1996). Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. Journal of Clinical Oncology, 14(2), 467–472.

    CAS  PubMed  Google Scholar 

  146. Heinsohn, S., Evermann, U., Zur Stadt, U., Bielack, S., & Kabisch, H. (2007). Determination of the prognostic value of loss of heterozygosity at the retinoblastoma gene in osteosarcoma. International Journal of Oncology, 30(5), 1205–1214.

    CAS  PubMed  Google Scholar 

  147. Patino-Garcia, A., & Sierrasesumaga, L. (1997). Analysis of the p16INK4 and TP53 tumor suppressor genes in bone sarcoma pediatric patients. Cancer Genetics and Cytogenetics, 98(1), 50–55.

    CAS  PubMed  Google Scholar 

  148. Maitra, A., Roberts, H., Weinberg, A. G., & Geradts, J. (2001). Loss of p16(INK4a) expression correlates with decreased survival in pediatric osteosarcomas. International Journal of Cancer, 95(1), 34–38.

    CAS  Google Scholar 

  149. Borys, D., Canter, R. J., Hoch, B., Martinez, S. R., Tamurian, R. M., Murphy, B., et al. (2012). P16 expression predicts necrotic response among patients with osteosarcoma receiving neoadjuvant chemotherapy. Human Pathology, 43(11), 1948–1954.

    CAS  PubMed  Google Scholar 

  150. Wei, G., Lonardo, F., Ueda, T., Kim, T., Huvos, A. G., Healey, J. H., et al. (1999). CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. International Journal of Cancer, 80(2), 199–204.

    CAS  Google Scholar 

  151. Wunder, J. S., Eppert, K., Burrow, S. R., Gokgoz, N., Bell, R. S., & Andrulis, I. L. (1999). Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene, 18(3), 783–788.

    CAS  PubMed  Google Scholar 

  152. Yoshida, A., Ushiku, T., Motoi, T., Beppu, Y., Fukayama, M., Tsuda, H., et al. (2012). MDM2 and CDK4 immunohistochemical coexpression in high-grade osteosarcoma: correlation with a dedifferentiated subtype. American Journal of Surgical Pathology, 36(3), 423–431.

    PubMed  Google Scholar 

  153. Nakayama, H. (2002). RecQ family helicases: roles as tumor suppressor proteins. Oncogene, 21(58), 9008–9021.

    CAS  PubMed  Google Scholar 

  154. Nishijo, K., Nakayama, T., Aoyama, T., Okamoto, T., Ishibe, T., Yasura, K., et al. (2004). Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. International Journal of Cancer, 111(3), 367–372.

    CAS  Google Scholar 

  155. Yen, C. C., Chen, W. M., Chen, T. H., Chen, W. Y., Chen, P. C., Chiou, H. J., et al. (2009). Identification of chromosomal aberrations associated with disease progression and a novel 3q13.31 deletion involving LSAMP gene in osteosarcoma. International Journal of Oncology, 35(4), 775–788.

    CAS  PubMed  Google Scholar 

  156. Pasic, I., Shlien, A., Durbin, A. D., Stavropoulos, D. J., Baskin, B., Ray, P. N., et al. (2010). Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma. Cancer Research, 70(1), 160–171.

    CAS  PubMed  Google Scholar 

  157. Kresse, S. H., Ohnstad, H. O., Paulsen, E. B., Bjerkehagen, B., Szuhai, K., Serra, M., et al. (2009). LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. Genes, Chromosomes & Cancer, 48(8), 679–693.

    CAS  Google Scholar 

  158. Leaner, V. D., Chick, J. F., Donninger, H., Linniola, I., Mendoza, A., Khanna, C., et al. (2009). Inhibition of AP-1 transcriptional activity blocks the migration, invasion, and experimental metastasis of murine osteosarcoma. American Journal of Pathology, 174(1), 265–275.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Kimura, R., Ishikawa, C., Rokkaku, T., Janknecht, R., & Mori, N. (2011). Phosphorylated c-Jun and Fra-1 induce matrix metalloproteinase-1 and thereby regulate invasion activity of 143B osteosarcoma cells. Biochimica et Biophysica Acta, 1813(8), 1543–1553.

    CAS  PubMed  Google Scholar 

  160. Kunita, A., Kashima, T. G., Ohazama, A., Grigoriadis, A. E., & Fukayama, M. (2011). Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. American Journal of Pathology, 179(2), 1041–1049.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235(4785), 177–182.

    CAS  PubMed  Google Scholar 

  162. Akatsuka, T., Wada, T., Kokai, Y., Kawaguchi, S., Isu, K., Yamashiro, K., et al. (2002). ErbB2 expression is correlated with increased survival of patients with osteosarcoma. Cancer, 94(5), 1397–1404.

    CAS  PubMed  Google Scholar 

  163. Anninga, J. K., van de Vijver, M. J., Cleton-Jansen, A. M., Kristel, P. M., Taminiau, A. H., Nooij, M., et al. (2004). Overexpression of the HER-2 oncogene does not play a role in high-grade osteosarcomas. European Journal of Cancer, 40(7), 963–970.

    CAS  PubMed  Google Scholar 

  164. Somers, G. R., Ho, M., Zielenska, M., Squire, J. A., & Thorner, P. S. (2005). HER2 amplification and overexpression is not present in pediatric osteosarcoma: a tissue microarray study. Pediatric and Developmental Pathology, 8(5), 525–532.

    CAS  PubMed  Google Scholar 

  165. Baumhoer, D., Smida, J., Specht, K., Bink, K., Quintanilla-Martinez, L., Rosemann, M., et al. (2011). Aberrant expression of the human epidermal growth factor receptor 2 oncogene is not a common feature in osteosarcoma. Human Pathology, 42(6), 859–866.

    CAS  PubMed  Google Scholar 

  166. Yoshida, C. A., Furuichi, T., Fujita, T., Fukuyama, R., Kanatani, N., Kobayashi, S., et al. (2002). Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nature Genetics, 32(4), 633–638.

    CAS  PubMed  Google Scholar 

  167. Galindo, M., Pratap, J., Young, D. W., Hovhannisyan, H., Im, H. J., Choi, J. Y., et al. (2005). The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. Journal of Biological Chemistry, 280(21), 20274–20285.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. van Harn, T., Foijer, F., van Vugt, M., Banerjee, R., Yang, F., Oostra, A., et al. (2010). Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes & Development, 24(13), 1377–1388.

    Google Scholar 

  169. Lengner, C. J., Steinman, H. A., Gagnon, J., Smith, T. W., Henderson, J. E., Kream, B. E., et al. (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. Journal of Cell Biology, 172(6), 909–921.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Thomas, D. M., Johnson, S. A., Sims, N. A., Trivett, M. K., Slavin, J. L., Rubin, B. P., et al. (2004). Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. Journal of Cell Biology, 167(5), 925–934.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Won, K. Y., Park, H. R., & Park, Y. K. (2009). Prognostic implication of immunohistochemical Runx2 expression in osteosarcoma. Tumori, 95(3), 311–316.

    CAS  PubMed  Google Scholar 

  172. Sadikovic, B., Thorner, P., Chilton-Macneill, S., Martin, J. W., Cervigne, N. K., Squire, J., et al. (2010). Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer, 10, 202.

    PubMed Central  PubMed  Google Scholar 

  173. Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2007). microRNAs as oncogenes and tumor suppressors. Developmental Biology, 302(1), 1–12.

    CAS  PubMed  Google Scholar 

  174. Shenouda, S. K., & Alahari, S. K. (2009). MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Reviews, 28(3–4), 369–378.

    CAS  PubMed  Google Scholar 

  175. Zhou, G., Shi, X., Zhang, J., Wu, S., & Zhao, J. (2013). MicroRNAs in osteosarcoma: from biological players to clinical contributors, a review. Journal of International Medical Research, 41(1), 1–12.

    CAS  PubMed  Google Scholar 

  176. Miao, J., Wu, S., Peng, Z., Tania, M., & Zhang, C. (2013). MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biology, 34(4), 2093–2098.

    CAS  PubMed  Google Scholar 

  177. Liu, L. H., Li, H., Li, J. P., Zhong, H., Zhang, H. C., Chen, J., et al. (2011). miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochemical and Biophysical Research Communications, 416(1–2), 31–38.

    CAS  PubMed  Google Scholar 

  178. Duan, Z., Choy, E., Harmon, D., Liu, X., Susa, M., Mankin, H., et al. (2011). MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Molecular Cancer Therapeutics, 10(8), 1337–1345.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Zhang, H., Cai, X., Wang, Y., Tang, H., Tong, D., & Ji, F. (2010). microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncology Reports, 24(5), 1363–1369.

    CAS  PubMed  Google Scholar 

  180. Osaki, M., Takeshita, F., Sugimoto, Y., Kosaka, N., Yamamoto, Y., Yoshioka, Y., et al. (2011). MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Molecular Therapy, 19(6), 1123–1130.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Tang, M., Lin, L., Cai, H., Tang, J., & Zhou, Z. (2013). MicroRNA-145 downregulation associates with advanced tumor progression and poor prognosis in patients suffering osteosarcoma. OncoTargets and Therapy, 6, 833–838.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Ziyan, W., Shuhua, Y., Xiufang, W., & Xiaoyun, L. (2011). MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Medical Oncology, 28(4), 1469–1474.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Sun Kim or Yong-Koo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.S., Park, YK. Significance of MTA1 in the molecular characterization of osteosarcoma. Cancer Metastasis Rev 33, 981–991 (2014). https://doi.org/10.1007/s10555-014-9523-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9523-3

Keywords

Navigation