Skip to main content

Advertisement

Log in

Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lecka-Czernik, B. (2011). Marrow fat metabolism is linked to the systemic energy metabolism. Bone, 50(2), 534–539.

    PubMed Central  PubMed  Google Scholar 

  2. Lee, N. K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J. D., Confavreux, C., Dacquin, R., Mee, P. J., McKee, M. D., Jung, D. Y., Zhang, Z., Kim, J. K., Mauvais-Jarvis, F., Ducy, P., & Karsenty, G. (2007). Endocrine regulation of energy metabolism by the skeleton. Cell, 130, 456–469.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Weilbaecher, K. N., Guise, T. A., & McCauley, L. K. (2011). Cancer to bone: a fatal attraction. Nature Reviews, 11, 411–425.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Roodman, G. D. (2004). Mechanisms of bone metastasis. New England Journal of Medicine, 350, 1655–1664.

    CAS  PubMed  Google Scholar 

  5. Coleman, R. E. (2001). Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treatment Reviews, 27, 165–176.

    CAS  PubMed  Google Scholar 

  6. Tuohimaa, P., Tenkanen, L., Syvala, H., Lumme, S., Hakulinen, T., Dillner, J., & Hakama, M. (2007). Interaction of factors related to the metabolic syndrome and vitamin D on risk of prostate cancer. Cancer Epidemiology, Biomarkers and Prevention, 16, 302–307.

    CAS  PubMed  Google Scholar 

  7. Amling, C. L. (2005). Relationship between obesity and prostate cancer. Current Opinion in Urology, 15, 167–171.

    PubMed  Google Scholar 

  8. Gong, Z., Neuhouser, M. L., Goodman, P. J., Albanes, D., Chi, C., Hsing, A. W., Lippman, S. M., Platz, E. A., Pollak, M. N., Thompson, I. M., & Kristal, A. R. (2006). Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiology, Biomarkers and Prevention, 15, 1977–1983.

    PubMed  Google Scholar 

  9. Hsing, A. W., Chua, S., Jr., Gao, Y. T., Gentzschein, E., Chang, L., Deng, J., & Stanczyk, F. Z. (2001). Prostate cancer risk and serum levels of insulin and leptin: a population-based study. Journal of the National Cancer Institute, 93, 783–789.

    CAS  PubMed  Google Scholar 

  10. Hsing, A. W., Sakoda, L. C., & Chua, S., Jr. (2007). Obesity, metabolic syndrome, and prostate cancer. The American Journal of Clinical Nutrition., 86, s843–857.

    PubMed  Google Scholar 

  11. Hubbard, J. S., Rohrmann, S., Landis, P. K., Metter, E. J., Muller, D. C., Andres, R., Carter, H. B., & Platz, E. A. (2004). Association of prostate cancer risk with insulin, glucose, and anthropometry in the Baltimore longitudinal study of aging. Urology, 63, 253–258.

    PubMed  Google Scholar 

  12. Kurahashi, N., Iwasaki, M., Sasazuki, S., Otani, T., Inoue, M., & Tsugane, S. (2006). Association of body mass index and height with risk of prostate cancer among middle-aged Japanese men. British Journal of Cancer, 94, 740–742.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Rodriguez, C., Freedland, S. J., Deka, A., Jacobs, E. J., McCullough, M. L., Patel, A. V., Thun, M. J., & Calle, E. E. (2007). Body mass index, weight change, and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiology, Biomarkers and Prevention, 16, 63–69.

    PubMed  Google Scholar 

  14. Scosyrev, E., Messing, E. M., Mohile, S., Golijanin, D., & Wu, G. (2012). Prostate cancer in the elderly: frequency of advanced disease at presentation and disease-specific mortality. Cancer, 118, 3062–3070.

    PubMed  Google Scholar 

  15. Scosyrev, E., Wu, G., Mohile, S., & Messing, E. M. (2012). Prostate-specific antigen screening for prostate cancer and the risk of overt metastatic disease at presentation : Analysis of trends over time. Cancer, 118, 5768–5776.

    PubMed  Google Scholar 

  16. Putnam, S. D., Cerhan, J. R., Parker, A. S., Bianchi, G. D., Wallace, R. B., Cantor, K. P., & Lynch, C. F. (2000). Lifestyle and anthropometric risk factors for prostate cancer in a cohort of Iowa men. Annals of Epidemiology, 10, 361–369.

    CAS  PubMed  Google Scholar 

  17. Dal Maso, L., Zucchetto, A., La Vecchia, C., Montella, M., Conti, E., Canzonieri, V., Talamini, R., Tavani, A., Negri, E., Garbeglio, A., & Franceschi, S. (2004). Prostate cancer and body size at different ages: an Italian multicentre case–control study. British Journal of Cancer, 90, 2176–2180.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. MacInnis, R. J., English, D. R., Gertig, D. M., Hopper, J. L., & Giles, G. G. (2003). Body size and composition and prostate cancer risk. Cancer Epidemiology, Biomarkers and Prevention, 12, 1417–1421.

    PubMed  Google Scholar 

  19. Freedland, S. J., Banez, L. L., Sun, L. L., Fitzsimons, N. J., & Moul, J. W. (2009). Obese men have higher-grade and larger tumors: an analysis of the duke prostate center database. Prostate Cancer and Prostatic Diseases, 12, 259–263.

    CAS  PubMed  Google Scholar 

  20. Amling, C. L., Riffenburgh, R. H., Sun, L., Moul, J. W., Lance, R. S., Kusuda, L., Sexton, W. J., Soderdahl, D. W., Donahue, T. F., Foley, J. P., Chung, A. K., & McLeod, D. G. (2004). Pathologic variables and recurrence ates as related to obesity and race in men with prostate cancer undergoing radical prostatectomy. Journal of Clinical Oncology, 22, 439–445.

    PubMed  Google Scholar 

  21. Bassett, W. W., Cooperberg, M. R., Sadetsky, N., Silva, S., DuChane, J., Pasta, D. J., Chan, J. M., Anast, J. W., Carroll, P. R., & Kane, C. J. (2005). Impact of obesity on prostate cancer recurrence after radical prostatectomy: data from CaPSURE. Urology, 66, 1060–1065.

    PubMed  Google Scholar 

  22. Freedland, S. J., Aronson, W. J., Kane, C. J., Presti, J. C., Jr., Amling, C. L., Elashoff, D., & Terris, M. K. (2004). Impact of obesity on biochemical control after radical prostatectomy for clinically localized prostate cancer: a report by the Shared Equal Access Regional Cancer Hospital database study group. Journal of Clinical Oncology, 22, 446–453.

    PubMed  Google Scholar 

  23. Freedland, S. J., Grubb, K. A., Yiu, S. K., Humphreys, E. B., Nielsen, M. E., Mangold, L. A., Isaacs, W. B., & Partin, A. W. (2005). Obesity and risk of biochemical progression following radical prostatectomy at a tertiary care referral center. The Journal of Urology, 174, 919–922.

    PubMed  Google Scholar 

  24. Palma, D., Pickles, T., & Tyldesley, S. (2007). Obesity as a predictor of biochemical recurrence and survival after radiation therapy for prostate cancer. BJU International, 100, 315–319.

    PubMed  Google Scholar 

  25. Stroup, S. P., Cullen, J., Auge, B. K., L’Esperance, J. O., & Kang, S. K. (2007). Effect of obesity on prostate-specific antigen recurrence after radiation therapy for localized prostate cancer as measured by the 2006 Radiation Therapy Oncology Group-American Society for Therapeutic Radiation and Oncology (RTOG-ASTRO) Phoenix consensus definition. Cancer, 110, 1003–1009.

    PubMed  Google Scholar 

  26. Rodriguez, C., Patel, A. V., Calle, E. E., Jacobs, E. J., Chao, A., & Thun, M. J. (2001). Body mass index, height, and prostate cancer mortality in two large cohorts of adult men in the United States. Cancer Epidemiology, Biomarkers and Prevention, 10, 345–353.

    CAS  PubMed  Google Scholar 

  27. Calle, E. E., Rodriguez, C., Walker-Thurmond, K., & Thun, M. J. (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. New England Journal of Medicine, 348, 1625–1638.

    PubMed  Google Scholar 

  28. Gong, Z., Agalliu, I., Lin, D. W., Stanford, J. L., & Kristal, A. R. (2007). Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer, 109, 1192–1202.

    PubMed  Google Scholar 

  29. Keto, C. J., Aronson, W. J., Terris, M. K., Presti, J. C., Kane, C. J., Amling, C. L., & Freedland, S. J. (2012). Obesity is associated with castration-resistant disease and metastasis in men treated with androgen deprivation therapy after radical prostatectomy: results from the SEARCH database. BJU International, 110, 492–498.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Crujeiras, A. B., Diaz-Lagares, A., Carreira, M. C., Amil, M., & Casanueva, F. F. (2013). Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radical Research, 47, 243–256.

    CAS  PubMed  Google Scholar 

  31. Gueron, G., De Siervi, A., & Vazquez, E. (2012). Advanced prostate cancer: reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer and Prostatic Diseases, 15, 213–221.

    CAS  PubMed  Google Scholar 

  32. Nelson, W. G., DeWeese, T. L., & DeMarzo, A. M. (2002). The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Reviews, 21, 3–16.

    CAS  PubMed  Google Scholar 

  33. Imbriaco, M., Larson, S. M., Yeung, H. W., Mawlawi, O. R., Erdi, Y., Venkatraman, E. S., & Scher, H. I. (1998). A new parameter for measuring metastatic bone involvement by prostate cancer: the bone scan index. Clinical Cancer Research, 4, 1765–1772.

    CAS  PubMed  Google Scholar 

  34. Schneider, A., Kalikin, L. M., Mattos, A. C., Keller, E. T., Allen, M. J., Pienta, K. J., & McCauley, L. K. (2005). Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology, 146, 1727–1736.

    CAS  PubMed  Google Scholar 

  35. Guise, T. A., Mohammad, K. S., Clines, G., Stebbins, E. G., Wong, D. H., Higgins, L. S., Vessella, R., Corey, E., Padalecki, S., Suva, L., & Chirgwin, J. M. (2006). Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clinical Cancer Research, 12, 6213s–6216s.

    CAS  PubMed  Google Scholar 

  36. Park, S. I., Liao, J., Berry, J. E., Li, X., Koh, A. J., Michalski, M. E., Eber, M. R., Soki, F. N., Sadler, D., Sud, S., Tisdelle, S., Daignault, S. D., Nemeth, J. A., Snyder, L. A., Wronski, T. J., Pienta, K. J., & McCauley, L. K. (2012). Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Research, 72, 2522–2532.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Brown, M. D., Hart, C. A., Gazi, E., Bagley, S., & Clarke, N. W. (2006). Promotion of prostatic metastatic migration towards human bone marrow stoma by omega 6 and its inhibition by omega 3 PUFAS. British Journal of Cancer, 94, 842–853.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Gazi, E., Gardner, P., Lockyer, N. P., Hart, C. A., Brown, M. D., & Clarke, N. W. (2007). Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. Journal of Lipid Research, 48, 1846–1856.

    CAS  PubMed  Google Scholar 

  39. Gimble, J. M., & Nuttall, M. E. (2004). Bone and fat: old questions, new insights. Endocrine, 23, 183–188.

    CAS  PubMed  Google Scholar 

  40. Rosen, C., & Bouxsein, M. (2006). Mechanisms of disease: is osteoporosis the obesity of bone? Nature Clinical Practice Rheumatology, 2, 35–43.

    CAS  PubMed  Google Scholar 

  41. Beresford, J. N., Bennett, J. H., Devlin, C., Leboy, P. S., & Owen, M. E. (1992). Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. Journal of Cell Science, 102(Pt 2), 341–351.

    CAS  PubMed  Google Scholar 

  42. Owen, M. (1988). Marrow stromal stem cells. Journal of Cell Science, 10, 63–76 (Supplement).

    CAS  Google Scholar 

  43. Kawai, M., de Paula, F., & Rosen, C. (2012). New insights into osteoporosis: the bone-fat connection. Journal of Internal Medicine, 272, 317–329.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Lecka-Czernik, B., Rosen, C. J., & Kawai, M. (2010). Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle, 9, 3648–3654.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P., & Pino, A. M. (2009). Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Critical Reviews in Eukaryotic Gene Expression, 19, 109–124.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Jilka, R. L. (2002). Osteoblast progenitor fate and age-related bone loss. Journal of Musculoskeletal & Neuronal Interactions, 2, 581–583.

    CAS  Google Scholar 

  47. Oh, S., Sul, O., Kim, Y., Kim, H., Yu, R., Suh, J., & Choi, H. (2010). Saturated fatty acids enhance osteoclast survival. Journal of Lipid Research, 51, 892–899.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Chen, J., Lazarenko, O., Wu, X., Tong, Y., Blackburn, M., Shankar, K., Badger, T., & Ronis, M. (2010). Obesity reduces bone density associated with activation of PPARγ and suppression of Wnt/β-catenin in rapidly growing male rats. PLoS ONE, 5, e13704.

    PubMed Central  PubMed  Google Scholar 

  49. Moerman, E. J., Teng, K., Lipschitz, D. A., & Lecka-Czernik, B. (2004). Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell, 3, 379–389.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Duque, G. (2007). As a matter of fat: new perspectives on the understanding of age-related bone loss. BoneKEy-Osteovision., 4, 129–140.

    Google Scholar 

  51. Wan, Y., Chong, L. W., & Evans, R. M. (2007). PPAR-gamma regulates osteoclastogenesis in mice. Nature Medicine, 13, 1496–1503.

    CAS  PubMed  Google Scholar 

  52. Lecka-Czernik, B. (2010). PPARs in bone: the role in bone cell differentiation and regulation of energy metabolism. Current Osteoporosis Reports, 8, 84–90.

    PubMed  Google Scholar 

  53. Cao, J. (2011). Effects of obesity on bone metabolism. Journal of Orthopaedic Surgery and Research, 6, 30. doi:10.1186/1749-799X-6-30.

    PubMed Central  PubMed  Google Scholar 

  54. Villareal, D. T., Apovian, C. M., Kushner, R. F., Klein, S., American Society for Nutrition, & Naaso TOS. (2005). Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obesity Research, 13, 1849–1863.

    PubMed  Google Scholar 

  55. Bonewald, L. F., & Johnson, M. L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone, 42, 606–615.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Nielson, C. M., Srikanth, P., & Orwoll, E. S. (2012). Obesity and fracture in men and women: an epidemiologic perspective. Journal of Bone and Mineral Research, 27, 1–10.

    PubMed  Google Scholar 

  57. Hsu, Y. H., Venners, S. A., Terwedow, H. A., Feng, Y., Niu, T., Li, Z., Laird, N., Brain, J. D., Cummings, S. R., Bouxsein, M. L., Rosen, C. J., & Xu, X. (2006). Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. The American Journal of Clinical Nutrition, 83, 146–154.

    CAS  PubMed  Google Scholar 

  58. Owusu, W., Willett, W., Ascherio, A., Spiegelman, D., Rimm, E., Feskanich, D., & Colditz, G. (1998). Body anthropometry and the risk of hip and wrist fractures in men: results from a prospective study. Obesity Research, 6, 12–19.

    CAS  PubMed  Google Scholar 

  59. Kugel, H., Jung, C., Schulte, O., & Heindel, W. (2001). Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. Journal of Magnetic Resonance Imaging, 13, 263–268.

    CAS  PubMed  Google Scholar 

  60. Justesen, J., Stenderup, K., Ebbesen, E. N., Mosekilde, L., Steiniche, T., & Kassem, M. (2001). Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2, 165–171.

    CAS  PubMed  Google Scholar 

  61. Cao, J., Sun, L., & Gao, H. (2010). Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Annals of the New York Academy of Sciences, 1192, 292–297.

    CAS  PubMed  Google Scholar 

  62. Cao, J. J., Gregoire, B. R., & Gao, H. (2009). High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone, 44, 1097–1104.

    CAS  PubMed  Google Scholar 

  63. Halade, G., Rahman, M., Williams, P., & Fernandes, G. (2010). High fat diet-induced animal model of age-associated obesity and osteoporosis. Journal of Nutritional Biochemistry, 21, 1162–1169.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Halade, G., El Jamali, A., Williams, P., Fajardo, R., & Fernandes, G. (2011). Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Experimental Gerontology, 46, 43–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Kyung, T., Lee, J., Phan, T., Yu, R., & Choi, H. (2009). Osteoclastogenesis by bone marrow-derived macrophages is enhanced in obese mice. Journal of Nutrition, 139, 502–506.

    CAS  PubMed  Google Scholar 

  66. Krings, A., Rahman, S., Huang, S., Lu, Y., Czernik, P. J., & Lecka-Czernik, B. (2012). Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone, 50, 546–552.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Fazeli, P. K., Horowitz, M. C., MacDougald, O. A., Scheller, E. L., Rodeheffer, M. S., Rosen, C. J., & Klibanski, A. (2013). Marrow fat and bone–new perspectives. The Journal of Clinical Endocrinology and Metabolism, 98, 935–945.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Gimble, J. M., Zvonic, S., Floyd, Z. E., Kassem, M., & Nuttall, M. E. (2006). Playing with bone and fat. Journal of Cellular Biochemistry, 98, 251–266.

    CAS  PubMed  Google Scholar 

  69. Lecka-Czernik, B., Gubrij, I., Moerman, E. J., Kajkenova, O., Lipschitz, D. A., Manolagas, S. C., & Jilka, R. L. (1999). Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. Journal of Cellular Biochemistry, 74, 357–371.

    CAS  PubMed  Google Scholar 

  70. Shockley, K. R., Lazarenko, O. P., Czernik, P. J., Rosen, C. J., Churchill, G. A., & Lecka-Czernik, B. (2009). PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 106, 232–246.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Gimble, J. M. (1990). The function of adipocytes in the bone marrow stroma. The New Biologist, 2, 304–312.

    CAS  PubMed  Google Scholar 

  72. Paula, F. J., & Rosen, C. J. (2010). Obesity, diabetes mellitus and last but not least, osteoporosis. Arquivos Brasileiros de Endocrinologia e Metabologia, 54, 150–157.

    PubMed  Google Scholar 

  73. Roodman, G. D. (2012). Genes associate with abnormal bone cell activity in bone metastasis. Cancer Metastasis Review, 31(3–4), 569–78.

    CAS  Google Scholar 

  74. Trottier, M. D., Naaz, A., Li, Y., & Fraker, P. J. (2012). Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proceedings of the National Academy of Sciences of the United States of America, 109, 7622–7629.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. van Dielen, F. M., van’t Veer, C., Schols, A. M., Soeters, P. B., Buurman, W. A., & Greve, J. W. (2001). Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. International Journal of Obesity and Related Metabolic Disorders, 25, 1759–1766.

    PubMed  Google Scholar 

  76. Barbour, K. E., Zmuda, J. M., Boudreau, R., Strotmeyer, E. S., Horwitz, M. J., Evans, R. W., Kanaya, A. M., Harris, T. B., Bauer, D. C., & Cauley, J. A. (2011). Adipokines and the risk of fracture in older adults. Journal of Bone and Mineral Research, 26, 1568–1576.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Motyl, K. J., & Rosen, C. J. (2012). Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie, 94, 2089–2096.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Sadie-Van Gijsen, H., Crowther, N. J., Hough, F. S., & Ferris, W. F. (2012). The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity. Cellular and Molecular Life Sciences. doi:10.1007/s00018-012-1211-2.

    PubMed  Google Scholar 

  79. Gordeladze, J. O., Drevon, C. A., Syversen, U., & Reseland, J. E. (2002). Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. Journal of Cellular Biochemistry, 85, 825–836.

    CAS  PubMed  Google Scholar 

  80. Scheller, E. L., Song, J., Dishowitz, M. I., Soki, F. N., Hankenson, K. D., & Krebsbach, P. H. (2010). Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells. Stem Cells (Dayton, Ohio), 28, 1071–1080.

    CAS  Google Scholar 

  81. Thomas, T., Gori, F., Khosla, S., Jensen, M. D., Burguera, B., & Riggs, B. L. (1999). Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology, 140, 1630–1638.

    CAS  PubMed  Google Scholar 

  82. Hamrick, M. W. (2004). Leptin, bone mass, and the thrifty phenotype. Journal of Bone and Mineral Research, 19, 1607–1611.

    CAS  PubMed  Google Scholar 

  83. Hamrick, M. W., Della-Fera, M. A., Choi, Y. H., Pennington, C., Hartzell, D., & Baile, C. A. (2005). Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. Journal of Bone and Mineral Research, 20, 994–1001.

    CAS  PubMed  Google Scholar 

  84. Berg, A. H., Combs, T. P., & Scherer, P. E. (2002). ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends in Endocrinology and Metabolism, 13, 84–89.

    CAS  PubMed  Google Scholar 

  85. Reid, I. R. (2010). Fat and bone. Archives of Biochemistry and Biophysics, 503, 20–27.

    CAS  PubMed  Google Scholar 

  86. Shinoda, Y., Yamaguchi, M., Ogata, N., Akune, T., Kubota, N., Yamauchi, T., Terauchi, Y., Kadowaki, T., Takeuchi, Y., Fukumoto, S., Ikeda, T., Hoshi, K., Chung, U., Nakamura, K., & Kawaguchi, H. (2006). Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. Journal of Cellular Biochemistry, 99, 196–208.

    CAS  PubMed  Google Scholar 

  87. Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B., & Tilg, H. (2004). Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochemical and Biophysical Research Communications, 323, 630–635.

    CAS  PubMed  Google Scholar 

  88. Kanazawa, I. (2012). Adiponectin in metabolic bone disease. Current Medicinal Chemistry, 19, 5481–5492.

    CAS  PubMed  Google Scholar 

  89. Oshima, K., Nampei, A., Matsuda, M., Iwaki, M., Fukuhara, A., Hashimoto, J., Yoshikawa, H., & Shimomura, I. (2005). Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochemical and Biophysical Research Communications, 331, 520–526.

    CAS  PubMed  Google Scholar 

  90. Williams, G. A., Wang, Y., Callon, K. E., Watson, M., Lin, J. M., Lam, J. B., Costa, J. L., Orpe, A., Broom, N., Naot, D., Reid, I. R., & Cornish, J. (2009). In vitro and in vivo effects of adiponectin on bone. Endocrinology, 150, 3603–3610.

    CAS  PubMed  Google Scholar 

  91. de Heredia, F. P., Gomez-Martinez, S., & Marcos, A. (2012). Obesity, inflammation and the immune system. The Proceedings of the Nutrition Society, 71, 332–338.

    PubMed  Google Scholar 

  92. Harte, A. L., Tripathi, G., Piya, M. K., Barber, T. M., Clapham, J. C., Al-Daghri, N., Al-Disi, D., Kumsaiyai, W., Saravanan, P., Fowler, A. E., Oh, J. P., Kumar, S., & McTernan, P. G. (2013). NFkappaB as a potent regulator of inflammation in human adipose tissue, influenced by depot, adiposity, T2DM status, and TNFalpha. Obesity. doi:10.1002/oby.20336 (Silver Spring, MD).

    PubMed  Google Scholar 

  93. Mathis, D. (2013). Immunological goings-on in visceral adipose tissue. Cell Metabolism, 17, 851–859.

    CAS  PubMed  Google Scholar 

  94. Corre, J., Planat-Benard, V., Corberand, J. X., Penicaud, L., Casteilla, L., & Laharrague, P. (2004). Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells. British Journal of Haematology, 127, 344–347.

    PubMed  Google Scholar 

  95. Gimble, J. M., & Nuttall, M. E. (2012). The relationship between adipose tissue and bone metabolism. Clinical Biochemistry, 45, 874–879.

    CAS  PubMed  Google Scholar 

  96. Naveiras, O., Nardi, V., Wenzel, P. L., Hauschka, P. V., Fahey, F., & Daley, G. Q. (2009). Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature, 460, 259–263.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K., & Nagasawa, T. (2010). The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity, 33, 387–399.

    CAS  PubMed  Google Scholar 

  98. Belaid-Choucair, Z., Lepelletier, Y., Poncin, G., Thiry, A., Humblet, C., Maachi, M., Beaulieu, A., Schneider, E., Briquet, A., Mineur, P., Lambert, C., Mendes-Da-Cruz, D., Ahui, M. L., Asnafi, V., Dy, M., Boniver, J., Nusgens, B. V., Hermine, O., & Defresne, M. P. (2008). Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells (Dayton, Ohio), 26, 1556–1564.

    CAS  Google Scholar 

  99. Miharada, K., Hiroyama, T., Sudo, K., Danjo, I., Nagasawa, T., & Nakamura, Y. (2008). Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. Journal of Cellular Physiology, 215, 526–537.

    CAS  PubMed  Google Scholar 

  100. DiMascio, L., Voermans, C., Uqoezwa, M., Duncan, A., Lu, D., Wu, J., Sankar, U., & Reya, T. (2007). Identification of adiponectin as a novel hemopoietic stem cell growth factor. The Journal of Immunology, 178, 3511–3520.

    CAS  PubMed  Google Scholar 

  101. Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259, 87–91.

    CAS  PubMed  Google Scholar 

  102. Pang, W. W., Price, E. A., Sahoo, D., Beerman, I., Maloney, W. J., Rossi, D. J., Schrier, S. L., & Weissman, I. L. (2011). Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proceedings of the National Academy of Sciences of the United States of America, 108, 20012–20017.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ogawa, T., Kitagawa, M., & Hirokawa, K. (2000). Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mechanisms of Ageing and Development, 117, 57–68.

    CAS  PubMed  Google Scholar 

  104. Serafini, P., De Santo, C., Marigo, I., Cingarlini, S., Dolcetti, L., Gallina, G., Zanovello, P., & Bronte, V. (2004). Derangement of immune responses by myeloid suppressor cells. Cancer Immunology, Immunotherapy, 53, 64–72.

    CAS  PubMed  Google Scholar 

  105. Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. Journal of Biological Chemistry, 284, 34342–34354.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Johnson, A. R., Milner, J. J., & Makowski, L. (2012). The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunological Reviews, 249, 218–238.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Stienstra, R., Tack, C. J. K. T., Joosten, L. A., & Netea, M. G. (2012). The inflammasome puts obesity in the danger zone. Cell Metabolism, 15, 10–18.

    CAS  PubMed  Google Scholar 

  108. Tchernof, A., & Despres, J. P. (2013). Pathophysiology of human visceral obesity: an update. Physiological Reviews, 93, 359–404.

    CAS  PubMed  Google Scholar 

  109. Khosla, S. (2001). Minireview: the OPG/RANKL/RANK system. Endocrinology, 142, 5050–5055.

    CAS  PubMed  Google Scholar 

  110. Kimble, R. B., Matayoshi, A. B., Vannice, J. L., Kung, V. T., Williams, C., & Pacifici, R. (1995). Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology, 136, 3054–3061.

    CAS  PubMed  Google Scholar 

  111. Axmann, R. (2009). Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis and Rheumatism, 60, 2747–2756. doi:10.1002/art.24781.

    CAS  PubMed  Google Scholar 

  112. Cauley, J., Danielson, M., Boudreau, R., Forrest, K., Zmuda, J., Pahor, M., Tylavsky, F., Cummings, S., Harris, T., Newman, A., & Health ABC Study. (2007). Inflammatory markers and incident fracture risk in older Men and women: the health aging and body composition study. Journal of Bone and Mineral Research, 22, 1088–1095.

    CAS  PubMed  Google Scholar 

  113. Neels, J. G., & Olefsky, J. M. (2006). Inflamed fat: what starts the fire? Journal of Clinical Investigation, 116, 33–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation, 112, 1796–1808.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Craig, M. J., & Loberg, R. D. (2006). CCL2 (monocyte chemoattractant protein-1) in cancer bone metastases. Cancer Metastasis Reviews, 25, 611–619.

    CAS  PubMed  Google Scholar 

  116. Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R. L., & Ferrante, A. W., Jr. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. Journal of Clinical Investigation, 116, 115–124.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kamei, N., Tobe, K., Suzuki, R., Ohsugi, M., Watanabe, T., Kubota, N., Ohtsuka-Kowatari, N., Kumagai, K., Sakamoto, K., Kobayashi, M., Yamauchi, T., Ueki, K., Oishi, Y., Nishimura, S., Manabe, I., Hashimoto, H., Ohnishi, Y., Ogata, H., Tokuyama, K., Tsunoda, M., Ide, T., Murakami, K., Nagai, R., & Kadowaki, T. (2006). Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. Journal of Biological Chemistry, 281, 26602–26614.

    CAS  PubMed  Google Scholar 

  118. Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., & Kasuga, M. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation, 116, 1494–1505.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Hopwood, B., Tsykin, A., Findlay, D. M., & Fazzalari, N. L. (2009). Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone, 44, 87–101.

    CAS  PubMed  Google Scholar 

  120. Kim, M. S., Day, C. J., & Morrison, N. A. (2005). MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. Journal of Biological Chemistry, 280, 16163–16169.

    CAS  PubMed  Google Scholar 

  121. Graves, D. T., Jiang, Y., & Valente, A. J. (1999). The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Frontiers in Bioscience, 4, D571–580.

    CAS  PubMed  Google Scholar 

  122. Posner, L. J., Miligkos, T., Gilles, J. A., Carnes, D. L., Taddeo, D. R., & Graves, D. T. (1997). Monocyte chemoattractant protein-1 induces monocyte recruitment that is associated with an increase in numbers of osteoblasts. Bone, 21, 321–327.

    CAS  PubMed  Google Scholar 

  123. Sul, O. J., Ke, K., Kim, W. K., Kim, S. H., Lee, S. C., Kim, H. J., Kim, S. Y., Suh, J. H., & Choi, H. S. (2012). Absence of MCP-1 leads to elevated bone mass via impaired actin ring formation. Journal of Cellular Physiology, 227, 1619–1627.

    CAS  PubMed  Google Scholar 

  124. Blackwell, K. A., Raisz, L. G., & Pilbeam, C. C. (2010). Prostaglandins in bone: bad cop, good cop? Trends in Endocrinology and Metabolism, 21, 294–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews., 10, 181–193.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Naik, A. A., Xie, C., Zuscik, M. J., Kingsley, P., Schwarz, E. M., Awad, H., Guldberg, R., Drissi, H., Puzas, J. E., Boyce, B., Zhang, X., & O’Keefe, R. J. (2009). Reduced COX-2 expression in aged mice is associated with impaired fracture healing. Journal of Bone and Mineral Research, 24, 251–264.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Simon, A. M., Manigrasso, M. B., & O’Connor, J. P. (2002). Cyclo-oxygenase 2 function is essential for bone fracture healing. Journal of Bone and Mineral Research, 17, 963–976.

    CAS  PubMed  Google Scholar 

  128. Tian, X. Y., Zhang, Q., Zhao, R., Setterberg, R. B., Zeng, Q. Q., Iturria, S. J., Ma, Y. F., & Jee, W. S. (2008). Continuous PGE2 leads to net bone loss while intermittent PGE2 leads to net bone gain in lumbar vertebral bodies of adult female rats. Bone, 42, 914–920.

    CAS  PubMed  Google Scholar 

  129. Chen, Y. C., Sosnoski, D. M., Gandhi, U. H., Novinger, L. J., Prabhu, K. S., & Mastro, A. M. (2009). Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer. Carcinogenesis, 30, 1941–1948.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Hsieh, P. S., Lu, K. C., Chiang, C. F., & Chen, C. H. (2010). Suppressive effect of COX2 inhibitor on the progression of adipose inflammation in high-fat-induced obese rats. European Journal of Clinical Investigation, 40, 164–171.

    CAS  PubMed  Google Scholar 

  131. Anderson, G. D., Hauser, S. D., McGarity, K. L., Bremer, M. E., Isakson, P. C., & Gregory, S. A. (1996). Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. Journal of Clinical Investigation, 97, 2672–2679.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67, 4507–4513.

    CAS  PubMed  Google Scholar 

  133. Muta, M., Matsumoto, G., Nakashima, E., & Toi, M. (2006). Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation. Clinical Cancer Research, 12, 264–272.

    CAS  PubMed  Google Scholar 

  134. Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R. L., Komohara, Y., Decker, S. A., Ohlfest, J. R., & Okada, H. (2011). COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Research, 71, 2664–2674.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Eliopoulos, A. G., Dumitru, C. D., Wang, C. C., Cho, J., & Tsichlis, P. N. (2002). Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO Journal, 21, 4831–4840.

    CAS  PubMed  Google Scholar 

  136. Nakao, S., Kuwano, T., Tsutsumi-Miyahara, C., Ueda, S., Kimura, Y. N., Hamano, S., Sonoda, K. H., Saijo, Y., Nukiwa, T., Strieter, R. M., Ishibashi, T., Kuwano, M., & Ono, M. (2005). Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. Journal of Clinical Investigation, 115, 2979–2991.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Tajima, T., Murata, T., Aritake, K., Urade, Y., Hirai, H., Nakamura, M., Ozaki, H., & Hori, M. (2008). Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). The Journal of Pharmacology and Experimental Therapeutics, 326, 493–501.

    CAS  PubMed  Google Scholar 

  138. Tanaka, S., Tatsuguchi, A., Futagami, S., Gudis, K., Wada, K., Seo, T., Mitsui, K., Yonezawa, M., Nagata, K., Fujimori, S., Tsukui, T., Kishida, T., & Sakamoto, C. (2006). Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut, 55, 54–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Fruhbeck, G., Gomez-Ambrosi, J., Muruzabal, F. J., & Burrell, M. A. (2001). The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology., 280, E827–847.

    CAS  PubMed  Google Scholar 

  140. Kaneko, A., Satoh, Y., Tokuda, Y., Fujiyama, C., Udo, K., & Uozumi, J. (2010). Effects of adipocytes on the proliferation and differentiation of prostate cancer cells in a 3-D culture model. International Journal of Urology, 17, 369–376.

    PubMed  Google Scholar 

  141. Nieman, K., Kenny, H., Penicka, C., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M., Romero, I., Carey, M., Mills, G., Hotamisligil, G., Yamada, S., Peter, M., Gwin, K., & Lengyel, E. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine., 17, 1498–1503.

    CAS  PubMed  Google Scholar 

  142. Tokuda, Y., Satoh, Y., Fujiyama, C., Toda, S., Sugihara, H., & Masaki, Z. (2003). Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU International, 91, 716–720.

    CAS  PubMed  Google Scholar 

  143. Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., Wang, Y., Meulle, A., Salles, B., Le Gonidec, S., Garrido, I., Escourrou, G., Valet, P., & Muller, C. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71, 2455–2465.

    CAS  PubMed  Google Scholar 

  144. Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica et Biophysica Acta, 1831, 1533–41.

    CAS  PubMed  Google Scholar 

  145. Khandekar, M. J., Cohen, P., & Spiegelman, B. M. (2011). Molecular mechanisms of cancer development in obesity. Nature Reviews., 11, 886–895.

    CAS  PubMed  Google Scholar 

  146. Zadra, G., Photopoulos, C., & Loda, M. (2013). The fat side of prostate cancer. Biochimica et Biophysica Acta, 1831, 1518–1532.

    CAS  PubMed  Google Scholar 

  147. Llorente, A., Skotland, T., Sylvänne, T., Kauhanen, D., Rog, T., Orłowski, A., Vattulainen, I., Ekroos, K., & Sandvig, K. (2013). Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochimica et Biophysica Acta, 1831, 1302–9.

    CAS  PubMed  Google Scholar 

  148. Buzzai, M., Bauer, D. E., Jones, R. G., Deberardinis, R. J., Hatzivassiliou, G., Elstrom, R. L., & Thompson, C. B. (2005). The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene, 24, 4165–4173.

    CAS  PubMed  Google Scholar 

  149. Suburu, J., & Chen, Y. Q. (2012). Lipids and prostate cancer. Prostaglandins & Other Lipid Mediators, 98, 1–10.

    CAS  Google Scholar 

  150. Liu, Y. (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer and Prostatic Diseases., 9, 230–234.

    CAS  PubMed  Google Scholar 

  151. Herroon, M., Rajagurubandara, E., Hardaway, A., Powell, K., Turchick, A., Feldmann, D., & Podgorski, I. (2013). Bone marrow adipocytes promote tumor growth and survival in bone via FABP4-dependent mechanisms. Oncotarget, 4, 2108–2123.

  152. Paz-Filho, G., Lim, E. L., Wong, M. L., & Licinio, J. (2011). Associations between adipokines and obesity-related cancer. Frontiers in Bioscience, 16, 1634–1650.

    CAS  Google Scholar 

  153. Freedland, S. J., & Platz, E. A. (2007). Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiologic Reviews., 29, 88–97.

    PubMed  Google Scholar 

  154. Hoda, M. R., Theil, G., Mohammed, N., Fischer, K., & Fornara, P. (2012). The adipocyte-derived hormone leptin has proliferative actions on androgen-resistant prostate cancer cells linking obesity to advanced stages of prostate cancer. Journal of Oncology., 2012, 280386.

    PubMed Central  PubMed  Google Scholar 

  155. Onuma, M., Bub, J. D., Rummel, T. L., & Iwamoto, Y. (2003). Prostate cancer cell-adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. Journal of Biological Chemistry, 278, 42660–42667.

    CAS  PubMed  Google Scholar 

  156. Bussard, K., Gay, C., & Mastro, A. (2008). The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Reviews, 27, 41–55.

    PubMed  Google Scholar 

  157. Thobe, M. N., Clark, R. J., Bainer, R. O., Prasad, S. M., & Rinker-Schaeffer, C. W. (2011). From prostate to bone: key players in prostate cancer bone metastasis. Cancers (Basel)., 3, 478–493.

    PubMed Central  PubMed  Google Scholar 

  158. Fain, J. N., Kanu, A., Bahouth, S. W., Cowan, G. S., Jr., Hiler, M. L., & Leffler, C. W. (2002). Comparison of PGE2, prostacyclin and leptin release by human adipocytes versus explants of adipose tissue in primary culture. Prostaglandins, Leukotrienes, and Essential Fatty Acids., 67, 467–473.

    CAS  PubMed  Google Scholar 

  159. Fain, J. N., Leffler, C. W., & Bahouth, S. W. (2000). Eicosanoids as endogenous regulators of leptin release and lipolysis by mouse adipose tissue in primary culture. Journal of Lipid Research., 41, 1689–1694.

    CAS  PubMed  Google Scholar 

  160. Goktas, S., Yilmaz, M. I., Caglar, K., Sonmez, A., Kilic, S., & Bedir, S. (2005). Prostate cancer and adiponectin. Urology, 65, 1168–1172.

    PubMed  Google Scholar 

  161. Kelesidis, I., Kelesidis, T., & Mantzoros, C. S. (2006). Adiponectin and cancer: a systematic review. British Journal of Cancer., 94, 1221–1225.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Bub, J. D., Miyazaki, T., & Iwamoto, Y. (2006). Adiponectin as a growth inhibitor in prostate cancer cells. Biochemical and Biophysical Research Communications, 340, 1158–1166.

    CAS  PubMed  Google Scholar 

  163. Mistry, T., Digby, J. E., Chen, J., Desai, K. M., & Randeva, H. S. (2006). The regulation of adiponectin receptors in human prostate cancer cell lines. Biochemical and Biophysical Research Communications, 348, 832–838.

    CAS  PubMed  Google Scholar 

  164. Mistry, T., Digby, J. E., Desai, K. M., & Randeva, H. S. (2007). Obesity and prostate cancer: a role for adipokines. European Urology., 52, 46–53.

    CAS  PubMed  Google Scholar 

  165. Mistry, T., Digby, J. E., Desai, K. M., & Randeva, H. S. (2008). Leptin and adiponectin interact in the regulation of prostate cancer cell growth via modulation of p53 and bcl-2 expression. BJU International, 101, 1317–1322.

    CAS  PubMed  Google Scholar 

  166. Yokota, T., Meka, C. S., Medina, K. L., Igarashi, H., Comp, P. C., Takahashi, M., Nishida, M., Oritani, K., Miyagawa, J., Funahashi, T., Tomiyama, Y., Matsuzawa, Y., & Kincade, P. W. (2002). Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. Journal of Clinical Investigation, 109, 1303–1310.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Yokota, T., Meka, C. S., Kouro, T., Medina, K. L., Igarashi, H., Takahashi, M., Oritani, K., Funahashi, T., Tomiyama, Y., Matsuzawa, Y., & Kincade, P. W. (2003). Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells. The Journal of Immunology, 171, 5091–5099.

    CAS  PubMed  Google Scholar 

  168. Gasparini, G., Longo, R., Sarmiento, R., & Morabito, A. (2003). Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? The Lancet Oncology, 4, 605–615.

    CAS  PubMed  Google Scholar 

  169. Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. The Journal of Immunology, 188, 21–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Karavitis, J., Hix, L., Shi, Y., Schultz, R., Khazaie, K., & Zhang, M. (2012). Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLoS ONE, 7, e46342.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Lucci, A., Krishnamurthy, S., Singh, B., Bedrosian, I., Meric-Bernstam, F., Reuben, J., Broglio, K., Mosalpuria, K., Lodhi, A., Vincent, L., & Cristofanilli, M. (2009). Cyclooxygenase-2 expression in primary breast cancers predicts dissemination of cancer cells to the bone marrow. Breast Cancer Research and Treatment, 117, 61–68.

    CAS  PubMed  Google Scholar 

  172. Safina, A., Sotomayor, P., Limoge, M., Morrison, C., & Bakin, A. (2011). TAK1-TAB2 signaling contributes to bone destruction by breast carcinoma cells. Molecular Cancer Research, 9, 1042–1053.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Singh, B., Berry, J., Shoher, A., Ayers, G., Wei, C., & Lucci, A. (2007). COX-2 involvement in breast cancer metastasis to bone. Oncogene, 26, 3789–3796.

    CAS  PubMed  Google Scholar 

  174. Li, Z., Schem, C., Shi, Y., Medina, D., & Zhang, M. (2008). Increased COX2 expression enhances tumor-induced osteoclastic lesions in breast cancer bone metastasis. Clinical and Experimental Metastasis, 25, 389–400.

    PubMed  Google Scholar 

  175. Lee, E., Choi, E., Kim, S., Park, J., Kim, H., Ha, K., Kim, Y., Kim, S., Choe, M., Kim, J., & Han, J. (2007). Cyclooxygenase-2 promotes cell proliferation, migration and invasion in U2OS human osteosarcoma cells. Experimental and Molecular Medicine, 39, 469–476.

    CAS  PubMed  Google Scholar 

  176. Takita, M., Inada, M., Maruyama, T., & Miyaura, C. (2007). Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells. FEBS Letters, 581, 565–571.

    CAS  PubMed  Google Scholar 

  177. Valcarcel, M., Mendoza, L., Hernandez, J. J., Carrascal, T., Salado, C., Crende, O., & Vidal-Vanaclocha, F. (2011). Vascular endothelial growth factor regulates melanoma cell adhesion and growth in the bone marrow microenvironment via tumor cyclooxygenase-2. Journal of Translational Medicine, 9, 142.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Liu, X. H., Kirschenbaum, A., Yao, S., Lee, R., Holland, J. F., & Levine, A. C. (2000). Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. The Journal of Urology., 164, 820–825.

    CAS  PubMed  Google Scholar 

  179. Vo, B., Morton, D. S. K., Millena, A., Leath, C., & Khan, S. (2013). TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway. Endocrinology, 154, 1768–1779.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Hiraga, T., Myoui, A., Choi, M. E., Yoshikawa, H., & Yoneda, T. (2006). Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor-beta enhances bone metastases in breast cancer. Cancer Research, 66, 2067–2073.

    CAS  PubMed  Google Scholar 

  181. Takahashi, T., Uehara, H., Bando, Y., & Izumi, K. (2008). Soluble EP2 neutralizes prostaglandin E2-induced cell signaling and inhibits osteolytic tumor growth. Molecular Cancer Therapeutics, 7, 2807–2816.

    CAS  PubMed  Google Scholar 

  182. Liu, Q., Russell, M. R., Shahriari, K., Jernigan, D. L., Lioni, M. I., Garcia, F. U., & Fatatis, A. (2013). Interleukin-1beta promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Research, 73, 3297–3305.

    CAS  PubMed  Google Scholar 

  183. Le Bitoux, M. A., & Stamenkovic, I. (2008). Tumor-host interactions: the role of inflammation. Histochemistry and Cell Biology., 130, 1079–1090.

    CAS  PubMed  Google Scholar 

  184. Li, H. J., Reinhardt, F., Herschman, H. R., & Weinberg, R. A. (2012). Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discovery., 2, 840–855.

    CAS  PubMed  Google Scholar 

  185. Loberg, R., Day, L., Harwood, J., Ying, C., St John, L., Giles, R., Neeley, C., & Pienta, K. (2006). CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia, 8, 578–586.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Loberg, R. D., Ying, C., Craig, M., Yan, L., Snyder, L. A., & Pienta, K. J. (2007). CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 9, 556–562.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Lu, Y., Cai, Z., Galson, D. L., Xiao, G., Liu, Y., George, D. E., Melhem, M. F., Yao, Z., & Zhang, J. (2006). Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate, 66, 1311–1318.

    CAS  PubMed  Google Scholar 

  188. Herroon, M., Rajagurubandara, E. D. R., Chalasani, A., Hardaway, A., & Podgorski, I. (2013). Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene, 32, 1580–1593.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., Kaiser, E. A., Snyder, L. A., & Pollard, J. W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475, 222–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Zhang, J., Patel, L., & Pienta, K. (2010). CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine and Growth Factor Reviews, 21, 41–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Lu, Y., Cai, Z., Xiao, G., Keller, E., Mizokami, A., Yao, Z., Roodman, G., & Zhang, J. (2007). Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Research, 67, 3646–3653.

    CAS  PubMed  Google Scholar 

  192. Li, X., Loberg, R., Liao, J., Ying, C., Snyder, L., Pienta, K., & McCauley, L. (2009). A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Research, 69, 1685–1692.

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Mizutani, K., Sud, S., McGregor, N., Martinovski, G., Rice, B., Craig, M., Varsos, Z., Roca, H., & Pienta, K. (2009). The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia, 11, 1235–1242.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Lu, Y., Chen, Q., Corey, E., Xie, W., Fan, J., Mizokami, A., & Zhang, J. (2009). Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clinical and Experimental Metastasis, 26, 161–169.

    PubMed  Google Scholar 

  195. Nalla, A., Estes, N., Patel, J., & Rao, J. (2011). N-cadherin mediates angiogenesis by regulating monocyte chemoattractant protein-1 expression via PI3K/Akt signaling in prostate cancer cells. Experimental Cell Research, 317, 2512–2521.

    CAS  PubMed  Google Scholar 

  196. Hsieh, P. S., Jin, J. S., Chiang, C. F., Chan, P. C., Chen, C. H., & Shih, K. C. (2009). COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity, 17, 1150–1157 (Silver Spring, MD).

    CAS  PubMed  Google Scholar 

  197. Bossard, M. J., Tomaszek, T. A., Thompson, S. K., Amegadzie, B. Y., Hanning, C. R., Jones, C., Kurdyla, J. T., McNulty, D. E., Drake, F. H., Gowen, M., & Levy, M. A. (1996). Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. Journal of Biological Chemistry, 271, 12517–12524.

    CAS  PubMed  Google Scholar 

  198. Popivanova, B. K., Kostadinova, F. I., Furuichi, K., Shamekh, M. M., Kondo, T., Wada, T., Egashira, K., & Mukaida, N. (2009). Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Research, 69, 7884–7892.

    CAS  PubMed  Google Scholar 

  199. Huang, M., Narita, S., Numakura, K., Tsuruta, H., Saito, M., Inoue, T., Horikawa, Y., Tsuchiya, N., & Habuchi, T. (2012). A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Prostate, 72, 1779–1788.

    CAS  PubMed  Google Scholar 

  200. Pienta, K., Machiels, J., Schrijvers, D., Alekseev, B., Shkolnik, M., Crabb, S., Li, S., Seetharam, S., Puchalski, T., Takimoto, C., Elsayed, Y., Dawkins, F., & de Bono, J. (2013). Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Investigational New Drugs, 32, 760–768.

    Google Scholar 

  201. Abedinpour, P., Baron, V. J. W., & Borgström, P. (2011). Regression of prostate tumors upon combination of hormone ablation therapy and celecoxib in vivo. Prostate, 71, 813–823.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Antonarakis, E., Heath, E., Walczak, J., Nelson, W., Fedor, H., De Marzo, A., Zahurak, M., Piantadosi, S., Dannenberg, A., Gurganus, R., Baker, S., Parnes, H., DeWeese, T., Partin, A., & Carducci, M. (2009). Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. Journal of Clinical Oncology, 27, 4986–4993.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. James, N., Sydes, M., Clarke, N., Mason, M., Dearnaley, D., Anderson, J., Popert, R., Sanders, K., Morgan, R., Stansfeld, J., Dwyer, J., Masters, J., & Parmar, M. (2009). Systemic therapy for advancing or metastatic prostate cancer (STAMPEDE): a multi-arm, multistage randomized controlled trial. BJU., 103, 464–469.

    CAS  Google Scholar 

  204. Jendrossek, V. (2013). Targeting apoptosis pathways by Celecoxib in cancer. Cancer Letters, 332, 313–324.

    CAS  PubMed  Google Scholar 

  205. Pruthi, R. S., & Wallen, E. M. (2005). Cyclooxygenase-2: a therapeutic target for prostate cancer. Clinical Genitourinary Cancer, 4, 203–211.

    CAS  PubMed  Google Scholar 

  206. Sooriakumaran, P., Langley, S. E., Laing, R. W., & Coley, H. M. (2007). COX-2 inhibition: a possible role in the management of prostate cancer? Journal of Chemotherapy., 19, 21–32.

    CAS  PubMed  Google Scholar 

  207. www.Clinicaltrials.gov. (2011) Effects of ASA on prostate tissue NCT00234299

  208. www.Clinicaltrials.gov. (2013) Dexamethasone, aspirin, and diethylstilbestrol in treating patients with locally advanced or metastatic prostate cancer NCT00316927

  209. de Groot, D. J., de Vries, E. G., Groen, H. J., & de Jong, S. (2007). Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: from lab to clinic. Critical Reviews in Oncology/Hematology., 61, 52–69.

    PubMed  Google Scholar 

  210. Ulrich, C. M., Bigler, J., & Potter, J. D. (2006). Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nature Reviews., 6, 130–140.

    CAS  PubMed  Google Scholar 

  211. Robak, P., Smolewski, P., & Robak, T. (2008). The role of non-steroidal anti-inflammatory drugs in the risk of development and treatment of hematologic malignancies. Leukemia & Lymphoma., 49, 1452–1462.

    CAS  Google Scholar 

  212. Kashiwagi, E., Shiota, M., Yokomizo, A., Itsumi, M., Inokuchi, J., Uchiumi, T., & Naito, S. (2013). Prostaglandin receptor EP3 mediates growth inhibitory effect of aspirin through androgen receptor and contributes to castration resistance in prostate cancer cells. Endocrine-Related Cancer, 20, 431–441.

    CAS  PubMed  Google Scholar 

  213. Bishr, M., & Saad, F. (2013). Overview of the latest treatments for castration-resistant prostate cancer. Nature reviews Urology, 10, 522–528.

    PubMed  Google Scholar 

  214. Duque, G. (2008). Bone and fat connection in aging bone. Current Opinion in Rheumatology., 20, 429–434.

    CAS  PubMed  Google Scholar 

  215. Nuttall, M. E., & Gimble, J. M. (2004). Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Current Opinion in Pharmacology., 4, 290–294.

    CAS  PubMed  Google Scholar 

  216. Loberg, R., Ying, C., Craig, M., Day, L., Sargent, E., Neeley, C., Wojno, K., Snyder, L., Yan, L., & Pienta, K. (2007). Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Research, 67, 9417–9424.

    CAS  PubMed  Google Scholar 

  217. Sandhu, S., Papadopoulos, K., Fong, P., Patnaik, A., Messiou, C., Olmos, D., Wang, G., Tromp, B., Puchalski, T., Balkwill, F., Berns, B., Seetharam, S., de Bono, J., & Tolcher, A. (2013). A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemotherapy and Pharmacology, 71, 1041–1050.

    CAS  PubMed  Google Scholar 

  218. www.Clinicaltrials.gov. (2013) An open-label, multicenter, phase 2 study of single-agent CNTO 888 (an anti-CCL2 monoclonal antibody) for the treatment of subjects with metastatic castrate-resistant prostate cancer. NCT00992186

  219. www.Clinicaltrials.gov. (2012) S0916, MLN1202 in treating patients with bone metastases. NCT01015560

  220. Zheng, X., Cui, X., Avila, G., Huang, M., Liu, Y., Patel, J., Kong, A., Paulino, R., Shih, W., Lin, Y., Rabson, A., Reddy, B., & Conney, A. (2007). Atorvastatin and celecoxib inhibit prostate PC-3 tumors in immunodeficient mice. Clinical Cancer Research, 13, 5480–5487.

    CAS  PubMed  Google Scholar 

  221. www.Clinicaltrials.gov. (2013) COX-2 inhibitor reduces serum PSA levels might predict a lower risk of prostatic cancer in men with LUTS/BPH with an elevated PSA level. NCT01678313

  222. www.Clinicaltrials.gov. (2013) STAMPEDE: systemic therapy in advancing or metastatic prostate cancer: evaluation of drug efficacy: a multi-stage multi-arm randomised controlled trial. NCT00268476

  223. www.Clinicaltrials.gov. (2013) A trial of COX-2 inhibitors in PSA recurrence after definitive radiation or radical prostatectomy for prostate cancer. NCT00073970

  224. Singer, E., Palapattu, G., & van Wijngaarden, E. (2008). Prostate-specific antigen levels in relation to consumption of nonsteroidal anti-inflammatory drugs and acetaminophen: results from the 2001-2002 National Health and Nutrition Examination Survey. Cancer, 113, 2053–2057.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Podgorski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardaway, A.L., Herroon, M.K., Rajagurubandara, E. et al. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 33, 527–543 (2014). https://doi.org/10.1007/s10555-013-9484-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9484-y

Keywords

Navigation