Skip to main content

Advertisement

Log in

BRACking news on triple-negative/basal-like breast cancers: how BRCA1 deficiency may result in the development of a selective tumor subtype

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Mutations in the BRCA1 tumor suppressor predispose to the development of breast and ovarian cancers. Noticeably, the majority of BRCA1-associated breast cancers are triple-negative (ER-, PR- and HER2-) and display a basal-like phenotype, which are features relatively uncommon among sporadic breast cancers. It is well documented that BRCA1 is involved in a number of cellular functions converging to the maintenance of genomic stability. However, the control over DNA integrity does not seem to account for the peculiar phenotype of BRCA1-associated tumors since mutations in other genes involved in such a function, namely BRCA2, associate to a broader spectrum of breast carcinoma subtypes. Indeed, an increasing body of evidence indicates that BRCA1 is implicated also in the regulation of transcription by impinging upon general components of the transcriptional machinery. Thus, elucidating the complex biochemical network regulated by BRCA1 may allow a better understanding also of the biology of sporadic triple-negative/basal-like tumors and lay down the basis for novel preventive measures and more effective therapeutic strategies. This review summarizes recent findings on the role of BRCA1 in the regulation of transcription and how this might set the ground for the development of cancers with triple-negative/basal-like features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Esteller, M., Silva, J. M., Dominguez, G., Bonilla, F., Matias-Guiu, X., Lerma, E., et al. (2000). Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. Journal of the National Cancer Institute, 92(7), 564–569.

    Article  PubMed  CAS  Google Scholar 

  2. Welcsh, P. L., Lee, M. K., Gonzalez-Hernandez, R. M., Black, D. J., Mahadevappa, M., Swisher, E. M., et al. (2002). BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7560–7565.

    Article  PubMed  CAS  Google Scholar 

  3. Turner, N. C., Reis-Filho, J. S., Russell, A. M., Springall, R. J., Ryder, K., Steele, D., et al. (2007). BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene, 26(14), 2126–2132.

    Article  PubMed  CAS  Google Scholar 

  4. Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science (New York, N.Y.), 266(5182), 66–71.

    Article  CAS  Google Scholar 

  5. Venkitaraman, A. R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell, 108(2), 171–182.

    Article  PubMed  CAS  Google Scholar 

  6. Tutt, A., & Ashworth, A. (2002). The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends in Molecular Medicine, 8(12), 571–576.

    Article  PubMed  CAS  Google Scholar 

  7. Howlett, N. G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science (New York, N.Y.), 297(5581), 606–609.

    Article  CAS  Google Scholar 

  8. Kennedy, R. D., Quinn, J. E., Mullan, P. B., Johnston, P. G., & Harkin, D. P. (2004). The role of BRCA1 in the cellular response to chemotherapy. Journal of the National Cancer Institute, 96(22), 1659–1668.

    Article  PubMed  CAS  Google Scholar 

  9. Sgagias, M. K., Wagner, K. U., Hamik, B., Stoeger, S., Spieker, R., Huber, L. J., et al. (2004). Brca1-deficient murine mammary epithelial cells have increased sensitivity to CDDP and MMS. Cell Cycle, 3(11), 1451–1456.

    Article  PubMed  CAS  Google Scholar 

  10. Santarosa, M., Del Col, L., Tonin, E., Caragnano, A., Viel, A., & Maestro, R. (2009). Premature senescence is a major response to DNA cross-linking agents in BRCA1-defective cells: implication for tailored treatments of BRCA1 mutation carriers. Molecular Cancer Therapeutics, 8(4), 844–854.

    Article  PubMed  CAS  Google Scholar 

  11. Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917–921.

    Article  PubMed  CAS  Google Scholar 

  12. Stefansson, O. A., Jonasson, J. G., Johannsson, O. T., Olafsdottir, K., Steinarsdottir, M., Valgeirsdottir, S., et al. (2009). Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Research, 11(4), R47.

    Article  PubMed  CAS  Google Scholar 

  13. Lakhani, S. R., Van De Vijver, M. J., Jacquemier, J., Anderson, T. J., Osin, P. P., McGuffog, L., et al. (2002). The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. Journal of Clinical Oncology, 20(9), 2310–2318.

    Article  PubMed  CAS  Google Scholar 

  14. Foulkes, W. D., Stefansson, I. M., Chappuis, P. O., Begin, L. R., Goffin, J. R., Wong, N., et al. (2003). Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. Journal of the National Cancer Institute, 95(19), 1482–148.

    Google Scholar 

  15. Turner, N., Tutt, A., & Ashworth, A. (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nature Reviews.Cancer, 4(10), 814–819.

    Article  PubMed  CAS  Google Scholar 

  16. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423.

    Article  PubMed  CAS  Google Scholar 

  17. Lakhani, S. R., Reis-Filho, J. S., Fulford, L., Penault-Llorca, F., van der Vijver, M., Parry, S., et al. (2005). Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clinical Cancer Research, 11(14), 5175–5180.

    Article  PubMed  CAS  Google Scholar 

  18. Palacios, J., Honrado, E., Osorio, A., Cazorla, A., Sarrio, D., Barroso, A., et al. (2005). Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Research and Treatment, 90(1), 5–14.

    Article  PubMed  CAS  Google Scholar 

  19. Rodriguez-Pinilla, S. M., Sarrio, D., Honrado, E., Moreno-Bueno, G., Hardisson, D., Calero, F., et al. (2007). Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas. Journal of Clinical Pathology, 60(9), 1006–1012.

    Article  PubMed  Google Scholar 

  20. Lakhani, S. R., Jacquemier, J., Sloane, J. P., Gusterson, B. A., Anderson, T. J., van de Vijver, M. J., et al. (1998). Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. Journal of the National Cancer Institute, 90(15), 1138–1145.

    Article  PubMed  CAS  Google Scholar 

  21. McCarthy, A., Savage, K., Gabriel, A., Naceur, C., Reis-Filho, J. S., & Ashworth, A. (2007). A mouse model of basal-like breast carcinoma with metaplastic elements. The Journal of Pathology, 211(4), 389–398.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, X., Holstege, H., van der Gulden, H., Treur-Mulder, M., Zevenhoven, J., Velds, A., et al. (2007). Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12111–12116.

    Article  PubMed  CAS  Google Scholar 

  23. Shakya, R., Szabolcs, M., McCarthy, E., Ospina, E., Basso, K., Nandula, S., et al. (2008). The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 7040–7045.

    Article  PubMed  CAS  Google Scholar 

  24. Rakha, E. A., Elsheikh, S. E., Aleskandarany, M. A., Habashi, H. O., Green, A. R., Powe, D. G., et al. (2009). Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clinical Cancer Research, 15(7), 2302–2310.

    Article  PubMed  CAS  Google Scholar 

  25. Cheang, M. C., Voduc, D., Bajdik, C., Leung, S., McKinney, S., Chia, S. K., et al. (2008). Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clinical Cancer Research, 14(5), 1368–1376.

    Article  PubMed  CAS  Google Scholar 

  26. Yarden, R. I., & Brody, L. C. (1999). BRCA1 interacts with components of the histone deacetylase complex. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 4983–4988.

    Article  PubMed  CAS  Google Scholar 

  27. Pao, G. M., Janknecht, R., Ruffner, H., Hunter, T., & Verma, I. M. (2000). CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proceedings of the National Academy of Sciences of the United States of America, 97(3), 1020–1025.

    Article  PubMed  CAS  Google Scholar 

  28. Oishi, H., Kitagawa, H., Wada, O., Takezawa, S., Tora, L., Kouzu-Fujita, M., et al. (2006). An hGCN5/TRRAP histone acetyltransferase complex co-activates BRCA1 transactivation function through histone modification. The Journal of Biological Chemistry, 281(1), 20–26.

    Article  PubMed  CAS  Google Scholar 

  29. Bochar, D. A., Wang, L., Beniya, H., Kinev, A., Xue, Y., Lane, W. S., et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell, 102(2), 257–265.

    Article  PubMed  CAS  Google Scholar 

  30. Harte, M. T., O'Brien, G. J., Ryan, N. M., Gorski, J. J., Savage, K. I., Crawford, N. T., et al. (2010). BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Research, 70(6), 2538–2547.

    Article  PubMed  CAS  Google Scholar 

  31. Mullan, P. B., Quinn, J. E., & Harkin, D. P. (2006). The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene, 25(43), 5854–5863.

    Article  PubMed  CAS  Google Scholar 

  32. Huen, M. S., Sy, S. M., & Chen, J. (2010). BRCA1 and its toolbox for the maintenance of genome integrity. Nature Reviews. Molecular Cell Biology, 11(2), 138–148.

    Article  PubMed  CAS  Google Scholar 

  33. Hartman, A. R., & Ford, J. M. (2002). BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nature Genetics, 32(1), 180–184.

    Article  PubMed  CAS  Google Scholar 

  34. De Siervi, A., De Luca, P., Byun, J. S., Di, L. J., Fufa, T., Haggerty, C. M., et al. (2010). Transcriptional autoregulation by BRCA1. Cancer Research, 70(2), 532–542.

    Article  PubMed  Google Scholar 

  35. Chapman, M. S., & Verma, I. M. (1996). Transcriptional activation by BRCA1. Nature, 382(6593), 678–679.

    Article  PubMed  CAS  Google Scholar 

  36. Monteiro, A. N., August, A., & Hanafusa, H. (1996). Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13595–13599.

    Article  PubMed  CAS  Google Scholar 

  37. Scully, R., Anderson, S. F., Chao, D. M., Wei, W., Ye, L., Young, R. A., et al. (1997). BRCA1 is a component of the RNA polymerase II holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5605–5610.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S., & Parvin, J. D. (1998). BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genetics, 19(3), 254–256.

    Article  PubMed  CAS  Google Scholar 

  39. Krum, S. A., Miranda, G. A., Lin, C., & Lane, T. F. (2003). BRCA1 associates with processive RNA polymerase II. The Journal of Biological Chemistry, 278(52), 52012–52020.

    Article  PubMed  CAS  Google Scholar 

  40. Kleiman, F. E., & Manley, J. L. (1999). Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science (New York, N.Y.), 285(5433), 1576–1579.

    Article  CAS  Google Scholar 

  41. Aiyar, S., Sun, J. L., & Li, R. (2005). BRCA1: a locus-specific "liaison" in gene expression and genetic integrity. Journal of Cellular Biochemistry, 94(6), 1103–1111.

    Article  PubMed  CAS  Google Scholar 

  42. Kleiman, F. E., Wu-Baer, F., Fonseca, D., Kaneko, S., Baer, R., & Manley, J. L. (2005). BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes & Development, 19(10), 1227–1237.

    Article  CAS  Google Scholar 

  43. Starita, L. M., Horwitz, A. A., Keogh, M. C., Ishioka, C., Parvin, J. D., & Chiba, N. (2005). BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. The Journal of Biological Chemistry, 280(26), 24498–24505.

    Article  PubMed  CAS  Google Scholar 

  44. Santarosa, M., Del Col, L., Viel, A., Bivi, N., D'Ambrosio, C., Scaloni, A., et al. (2010). BRCA1 modulates the expression of hnRNPA2B1 and KHSRP. Cell Cycle, 9(23), 4666–4673.

    Article  PubMed  CAS  Google Scholar 

  45. Gherzi, R., Trabucchi, M., Ponassi, M., Ruggiero, T., Corte, G., Moroni, C., et al. (2006). The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biology, 5(1), e5.

    Article  PubMed  CAS  Google Scholar 

  46. Dreyfuss, G., Kim, V. N., & Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nature Reviews. Molecular Cell Biology, 3(3), 195–205.

    Article  PubMed  CAS  Google Scholar 

  47. Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., et al. (2007). Estrogen receptors: how do they signal and what are their targets. Physiological Reviews, 87(3), 905–931.

    Article  PubMed  CAS  Google Scholar 

  48. Liehr, J. G. (2000). Is estradiol a genotoxic mutagenic carcinogen? Endocrine Reviews, 21(1), 40–54.

    Article  PubMed  CAS  Google Scholar 

  49. Okoh, V., Deoraj, A., & Roy, D. (2011). Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochimica Et Biophysica Acta-Reviews on Cancer, 1815(1), 115–133.

    Article  CAS  Google Scholar 

  50. Narod, S. A., Brunet, J. S., Ghadirian, P., Robson, M., Heimdal, K., Neuhausen, S. L., et al. (2000). Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case–control study. Hereditary Breast Cancer Clinical Study Group. Lancet, 356(9245), 1876–1881.

    Article  PubMed  CAS  Google Scholar 

  51. Rosen, E. M., Fan, S., & Isaacs, C. (2005). BRCA1 in hormonal carcinogenesis: basic and clinical research. Endocrine-Related Cancer, 12(3), 533–548.

    Article  PubMed  CAS  Google Scholar 

  52. Fan, S., Wang, J., Yuan, R., Ma, Y., Meng, Q., Erdos, M. R., et al. (1999). BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science (New York, N.Y.), 284(5418), 1354–1356.

    Article  CAS  Google Scholar 

  53. Zheng, L., Annab, L. A., Afshari, C. A., Lee, W. H., & Boyer, T. G. (2001). BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9587–9592.

    Article  PubMed  CAS  Google Scholar 

  54. Xu, J., Fan, S., & Rosen, E. M. (2005). Regulation of the estrogen-inducible gene expression profile by the breast cancer susceptibility gene BRCA1. Endocrinology, 146(4), 2031–2047.

    Article  PubMed  CAS  Google Scholar 

  55. Gorski, J. J., Kennedy, R. D., Hosey, A. M., & Harkin, D. P. (2009). The complex relationship between BRCA1 and ERalpha in hereditary breast cancer. Clinical Cancer Research, 15(5), 1514–1518.

    Article  PubMed  CAS  Google Scholar 

  56. Fan, S., Ma, Y. X., Wang, C., Yuan, R. Q., Meng, Q., Wang, J. A., et al. (2002). p300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Research, 62(1), 141–151.

    PubMed  CAS  Google Scholar 

  57. Hosey, A. M., Gorski, J. J., Murray, M. M., Quinn, J. E., Chung, W. Y., Stewart, G. E., et al. (2007). Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 99(22), 1683–1694.

    Article  PubMed  CAS  Google Scholar 

  58. Lusa, L., Peissel, B., Manoukian, S., Marchesi, E., Radice, P., Pierotti, M. A., et al. (2008). Re: Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 100(10), 752–753.

    Article  PubMed  Google Scholar 

  59. Creighton, C. J., Hilger, A. M., Murthy, S., Rae, J. M., Chinnaiyan, A. M., & El-Ashry, D. (2006). Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Research, 66(7), 3903–3911.

    Article  PubMed  CAS  Google Scholar 

  60. Lopez-Tarruella, S., & Schiff, R. (2007). The dynamics of estrogen receptor status in breast cancer: re-shaping the paradigm. Clinical Cancer Research, 13(23), 6921–6925.

    Article  PubMed  CAS  Google Scholar 

  61. Bayliss, J., Hilger, A., Vishnu, P., Diehl, K., & El-Ashry, D. (2007). Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clinical Cancer, 13(23), 7029–7036.

    Article  CAS  Google Scholar 

  62. Adams, B. D., Furneaux, H., & White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology, 21(5), 1132–1147.

    Article  PubMed  CAS  Google Scholar 

  63. Pandey, D. P., & Picard, D. (2009). miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Molecular and Cellular Biology, 29(13), 3783–3790.

    Article  PubMed  CAS  Google Scholar 

  64. Trabucchi, M., Briata, P., Garcia-Mayoral, M., Haase, A. D., Filipowicz, W., Ramos, A., et al. (2009). The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 459(7249), 1010–1014.

    Article  PubMed  CAS  Google Scholar 

  65. Horwitz, K. B., & McGuire, W. L. (1978). Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. The Journal of Biological Chemistry, 253(7), 2223–2228.

    PubMed  CAS  Google Scholar 

  66. Cui, X., Zhang, P., Deng, W., Oesterreich, S., Lu, Y., Mills, G. B., et al. (2003). Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Molecular Endocrinology, 17(4), 575–588.

    Article  PubMed  CAS  Google Scholar 

  67. Cormier, E. M., Wolf, M. F., & Jordan, V. C. (1989). Decrease in estradiol-stimulated progesterone receptor production in MCF-7 cells by epidermal growth factor and possible clinical implication for paracrine-regulated breast cancer growth. Cancer Research, 49(3), 576–580.

    PubMed  CAS  Google Scholar 

  68. McClelland, R. A., Barrow, D., Madden, T. A., Dutkowski, C. M., Pamment, J., Knowlden, J. M., et al. (2001). Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology, 142(7), 2776–2788.

    Article  PubMed  CAS  Google Scholar 

  69. Voskuil, D. W., Bosma, A., Vrieling, A., Rookus, M. A., & van’t Veer, L. J. (2004). Insulin-like growth factor (IGF)-system mRNA quantities in normal and tumor breast tissue of women with sporadic and familial breast cancer risk. Breast Cancer Research and Treatment, 84(3), 225–233.

    Article  PubMed  CAS  Google Scholar 

  70. Collins, L. C., Martyniak, A., Kandel, M. J., Stadler, Z. K., Masciari, S., Miron, A., et al. (2009). Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA1 mutation status in women with triple-negative breast cancers. The American Journal of Surgical Pathology, 33(7), 1093–1097.

    Article  PubMed  Google Scholar 

  71. Burga, L. N., Hu, H., Juvekar, A., Tung, N. M., Troyan, S. L., Hofstatter, E. W., et al. (2011). Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Research, 13(2), R30.

    Article  PubMed  CAS  Google Scholar 

  72. Kageyama, R., Merlino, G. T., & Pastan, I. (1988). Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. The Journal of Biological Chemistry, 263(13), 6329–6336.

    PubMed  CAS  Google Scholar 

  73. Lamber, E. P., Horwitz, A. A., & Parvin, J. D. (2010). BRCA1 represses amphiregulin gene expression. Cancer Research, 70(3), 996–1005.

    Article  PubMed  CAS  Google Scholar 

  74. Willmarth, N. E., & Ethier, S. P. (2006). Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. The Journal of Biological Chemistry, 281(49), 37728–37737.

    Article  PubMed  CAS  Google Scholar 

  75. Burga, L. N., Tung, N. M., Troyan, S. L., Bostina, M., Konstantinopoulos, P. A., Fountzilas, H., et al. (2009). Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers. Cancer Research, 69(4), 1273–1278.

    Article  PubMed  CAS  Google Scholar 

  76. Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.

    Article  PubMed  CAS  Google Scholar 

  77. Hudelist, G., Wagner, T., Rosner, M., Fink-Retter, A., Gschwantler-Kaulich, D., Czerwenka, K., et al. (2007). Intratumoral IGF-I protein expression is selectively upregulated in breast cancer patients with BRCA1/2 mutations. Endocrine-Related Cancer, 14(4), 1053–1062.

    Article  PubMed  CAS  Google Scholar 

  78. Maor, S., Yosepovich, A., Papa, M. Z., Yarden, R. I., Mayer, D., Friedman, E., et al. (2007). Elevated insulin-like growth factor-I receptor (IGF-IR) levels in primary breast tumors associated with BRCA1 mutations. Cancer Letters, 257(2), 236–243.

    Article  PubMed  CAS  Google Scholar 

  79. Shukla, V., Coumoul, X., Cao, L., Wang, R. H., Xiao, C., Xu, X., et al. (2006). Absence of the full-length breast cancer-associated gene-1 leads to increased expression of insulin-like growth factor signaling axis members. Cancer Research, 66(14), 7151–7157.

    Article  PubMed  CAS  Google Scholar 

  80. Sachdev, D. (2008). Regulation of breast cancer metastasis by IGF signaling. Journal of Mammary Gland Biology and Neoplasia, 13(4), 431–441.

    Article  PubMed  Google Scholar 

  81. Creighton, C. J., Casa, A., Lazard, Z., Huang, S., Tsimelzon, A., Hilsenbeck, S. G., et al. (2008). Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. Journal of Clinical Oncology, 26(25), 4078–4085.

    Article  PubMed  CAS  Google Scholar 

  82. Dupont, J., Fernandez, A. M., Glackin, C. A., Helman, L., & LeRoith, D. (2001). Insulin-like growth factor 1 (IGF-1)-induced twist expression is involved in the anti-apoptotic effects of the IGF-1 receptor. The Journal of Biological Chemistry, 276(28), 26699–26707.

    Article  PubMed  CAS  Google Scholar 

  83. Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68(7), 2479–2488.

    Article  PubMed  CAS  Google Scholar 

  84. Palacios, J., Honrado, E., Osorio, A., Cazorla, A., Sarrio, D., Barroso, A., et al. (2003). Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clinical Cancer Research, 9(10 Pt 1), 3606–3614.

    PubMed  CAS  Google Scholar 

  85. Sarrio, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G., & Palacios, J. (2008). Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Research, 68(4), 989–997.

    Article  PubMed  CAS  Google Scholar 

  86. Turashvili, G., McKinney, S. E., Goktepe, O., Leung, S. C., Huntsman, D. G., Gelmon, K. A., et al. (2011). P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Modern Pathology, 24(1), 64–81.

    Article  PubMed  CAS  Google Scholar 

  87. Gorski, J. J., James, C. R., Quinn, J. E., Stewart, G. E., Staunton, K. C., Buckley, N. E., et al. (2010). BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Research and Treatment, 122(3), 721–731.

    Article  PubMed  CAS  Google Scholar 

  88. Arnes, J. B., Brunet, J. S., Stefansson, I., Begin, L. R., Wong, N., Chappuis, P. O., et al. (2005). Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clinical Cancer Research, 11(11), 4003–4011.

    Article  PubMed  CAS  Google Scholar 

  89. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  90. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.

    Article  PubMed  CAS  Google Scholar 

  91. Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute, 98(24), 1777–1785.

    Article  PubMed  Google Scholar 

  92. Sheridan, C., Kishimoto, H., Fuchs, R. K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C. H., et al. (2006). CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research, 8(5), R59.

    Article  PubMed  CAS  Google Scholar 

  93. Honeth, G., Bendahl, P. O., Ringner, M., Saal, L. H., Gruvberger-Saal, S. K., Lovgren, K., et al. (2008). The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Research, 10(3), R53.

    Article  PubMed  CAS  Google Scholar 

  94. Furuta, S., Jiang, X., Gu, B., Cheng, E., Chen, P. L., & Lee, W. H. (2005). Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9176–9181.

    Article  PubMed  CAS  Google Scholar 

  95. Liu, S., Ginestier, C., Charafe-Jauffret, E., Foco, H., Kleer, C. G., Merajver, S. D., et al. (2008). BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1680–1685.

    Article  PubMed  CAS  Google Scholar 

  96. Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913.

    Article  PubMed  CAS  Google Scholar 

  97. Molyneux, G., Geyer, F. C., Magnay, F. A., McCarthy, A., Kendrick, H., Natrajan, R., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–417.

    Article  PubMed  CAS  Google Scholar 

  98. Proia, T. A., Keller, P. J., Gupta, P. B., Klebba, I., Jones, A. D., Sedic, M., et al. (2011). Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell, 8(2), 149–163.

    Article  PubMed  CAS  Google Scholar 

  99. Niessen, K., Fu, Y., Chang, L., Hoodless, P. A., McFadden, D., & Karsan, A. (2008). Slug is a direct Notch target required for initiation of cardiac cushion cellularization. The Journal of Cell Biology, 182(2), 315–325.

    Article  PubMed  CAS  Google Scholar 

  100. DiMeo, T. A., Anderson, K., Phadke, P., Fan, C., Perou, C. M., Naber, S., et al. (2009). A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Research, 69(13), 5364–5373.

    Article  PubMed  CAS  Google Scholar 

  101. Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X., Shetuni, B., et al. (2010). ERalpha signaling through slug regulates E-cadherin and EMT. Oncogene, 29(10), 1451–1462.

    Article  PubMed  CAS  Google Scholar 

  102. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    Article  PubMed  CAS  Google Scholar 

  103. Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.

    Article  PubMed  CAS  Google Scholar 

  104. McKeon, F. (2004). P63 and the epithelial stem cell: more than status quo? Genes & Development, 18(5), 465–469.

    Article  CAS  Google Scholar 

  105. Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., et al. (1998). P63, a P53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Molecular Cell, 2(3), 305–316.

    Article  PubMed  CAS  Google Scholar 

  106. Murray-Zmijewski, F., Lane, D. P., & Bourdon, J. C. (2006). P53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death and Differentiation, 13(6), 962–972.

    Article  PubMed  CAS  Google Scholar 

  107. Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). P63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.

    Article  PubMed  CAS  Google Scholar 

  108. Senoo, M., Pinto, F., Crum, C. P., & McKeon, F. (2007). p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129(3), 523–536.

    Article  PubMed  CAS  Google Scholar 

  109. Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.

    PubMed  CAS  Google Scholar 

  110. Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.

    Article  PubMed  CAS  Google Scholar 

  111. DeYoung, M. P., Johannessen, C. M., Leong, C. O., Faquin, W., Rocco, J. W., & Ellisen, L. W. (2006). Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Research, 66(19), 9362–9368.

    Article  PubMed  CAS  Google Scholar 

  112. Ribeiro-Silva, A., Ramalho, L. N., Garcia, S. B., Brandao, D. F., Chahud, F., & Zucoloto, S. (2005). p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology, 47(5), 458–466.

    Article  PubMed  CAS  Google Scholar 

  113. Leong, C. O., Vidnovic, N., DeYoung, M. P., Sgroi, D., & Ellisen, L. W. (2007). The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. The Journal of Clinical Investigation, 117(5), 1370–1380.

    Article  PubMed  CAS  Google Scholar 

  114. Buckley, N. E., Conlon, S. J., Jirstrom, K., Kay, E. W., Crawford, N. T., O'Grady, A., et al. (2011). The DeltaNp63 proteins are key allies of BRCA1 in the prevention of basal-like breast cancer. Cancer Research, 71(5), 1933–1944.

    Article  PubMed  CAS  Google Scholar 

  115. Nguyen, P. L., Taghian, A. G., Katz, M. S., Niemierko, A., Abi Raad, R. F., Boon, W. L., et al. (2008). Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. Journal of Clinical Oncology, 26(14), 2373–2378.

    Article  PubMed  Google Scholar 

  116. Carey, L., Winer, E., Viale, G., Cameron, D., & Gianni, L. (2010). Triple-negative breast cancer: disease entity or title of convenience? Nature Reviews. Clinical Oncology, 7(12), 683–692.

    Article  PubMed  Google Scholar 

  117. Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. The New England Journal of Medicine, 363(20), 1938–1948.

    Article  PubMed  CAS  Google Scholar 

  118. Haffty, B. G., & Buchholz, T. A. (2010). Molecular predictors of locoregional recurrence in breast cancer: ready for prime time? Journal of Clinical Oncology, 28(10), 1627–1629.

    Article  PubMed  Google Scholar 

  119. Lee, E. H., Park, S. K., Park, B., Kim, S. W., Lee, M. H., Ahn, S. H., et al. (2010). Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis. Breast Cancer Research and Treatment, 122(1), 11–25.

    Article  PubMed  CAS  Google Scholar 

  120. Lee, L. J., Alexander, B., Schnitt, S. J., Comander, A., Gallagher, B., Garber, J. E., et al. (2011). Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer, 117(14), 3093–3100.

    Article  PubMed  CAS  Google Scholar 

  121. Gonzalez-Angulo, A. M., Timms, K. M., Liu, S., Chen, H., Litton, J. K., Potter, J., et al. (2011). Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clinical Cancer, 17(5), 1082–1089.

    Article  CAS  Google Scholar 

  122. Ben-Porath, I., Thomson, M. W., Carey, V. J., Ge, R., Bell, G. W., Regev, A., et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40(5), 499–507.

    Article  PubMed  CAS  Google Scholar 

  123. Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., & Kasimir-Bauer, S. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4), R46.

    Article  PubMed  CAS  Google Scholar 

  124. Yasmeen, A., Liu, W., Dekhil, H., Kassab, A., Aloyz, R., Foulkes, W. D., et al. (2008). BRCA1 mutations contribute to cell motility and invasion by affecting its main regulators. Cell Cycle, 7(23), 3781–3783.

    Article  PubMed  CAS  Google Scholar 

  125. Promkan, M., Liu, G., Patmasiriwat, P., & Chakrabarty, S. (2009). BRCA1 modulates malignant cell behavior, the expression of survivin and chemosensitivity in human breast cancer cells. International Journal of Cancer, 125(12), 2820–2828.

    Article  CAS  Google Scholar 

  126. Litzenburger, B. C., Creighton, C. J., Tsimelzon, A., Chan, B. T., Hilsenbeck, S. G., Wang, T., et al. (2011). High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clinical Cancer Research, 17(8), 2314–2327.

    Article  PubMed  CAS  Google Scholar 

  127. Yerushalmi, R., Gelmon, K. A., Leung, S., Gao, D., Cheang, M., Pollak, M., et al. (2011). Insulin-like growth factor receptor (IGF-1R) in breast cancer subtypes. Breast Cancer Research and Treatment, Epub ahead of print.

  128. Montserrat, N., Gallardo, A., Escuin, D., Catasus, L., Prat, J., Gutierrez-Avigno, F. J., et al. (2011). Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: a cooperative effort? Human Pathology, 42(1), 103–110.

    Article  PubMed  CAS  Google Scholar 

  129. Geradts, J., de Herreros, A. G., Su, Z., Burchette, J., Broadwater, G., & Bachelder, R. E. (2011). Nuclear Snail1 and nuclear ZEB1 protein expression in invasive and intraductal human breast carcinomas. Human Pathology, 42(8), 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  130. Storci, G., Sansone, P., Trere, D., Tavolari, S., Taffurelli, M., Ceccarelli, C., et al. (2008). The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. The Journal of Pathology, 214(1), 25–37.

    Article  PubMed  CAS  Google Scholar 

  131. Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clinical Cancer Research, 16(3), 876–887.

    Article  PubMed  CAS  Google Scholar 

  132. Richardson, A. L., Wang, Z. C., De Nicolo, A., Lu, X., Brown, M., Miron, A., et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell, 9(2), 121–132.

    Article  PubMed  CAS  Google Scholar 

  133. Ganesan, S., Silver, D. P., Greenberg, R. A., Avni, D., Drapkin, R., Miron, A., et al. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell, 111(3), 393–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Associazione Italiana per la Ricerca sul Cancro (AIRC), Regione Friuli Venezia Giulia, Italian Ministry of Health and Associazione Via di Natale.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuela Santarosa or Roberta Maestro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santarosa, M., Maestro, R. BRACking news on triple-negative/basal-like breast cancers: how BRCA1 deficiency may result in the development of a selective tumor subtype. Cancer Metastasis Rev 31, 131–142 (2012). https://doi.org/10.1007/s10555-011-9336-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9336-6

Keywords

Navigation