Skip to main content

Advertisement

Log in

Potential roles for prions and protein-only inheritance in cancer

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations); however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be upregulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in the gene expression and hyperactivation of MAP kinase signaling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses, and there is considerable evidence of the association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here, we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balmain, A., Gray, J., & Ponder, B. (2003). The genetics and genomics of cancer. Nature Genetics, 33(Suppl), 238–244.

    Article  PubMed  CAS  Google Scholar 

  2. Hunt, K. S., & Ray, J. A. (2008). Hereditary risk for cancer. In D. S. Alberts & L. M. Hess (Eds.), Fundamentals of cancer prevention (pp. 109–135). Berlin: Springer.

    Chapter  Google Scholar 

  3. Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216(4542), 136–144.

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner, S. B. (1998). Prions. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13363–13383.

    Article  PubMed  CAS  Google Scholar 

  5. Dormont, D. (2002). Prion diseases: Pathogenesis and public health concerns. FEBS Letters, 529(1), 17–21.

    Article  PubMed  CAS  Google Scholar 

  6. Wickner, R. B., Edskes, H. K., Shewmaker, F., Nakayashiki, T., Engel, A., McCann, L., et al. (2007). Yeast prions: Evolution of the prion concept. Prion, 1(2), 94–100.

    Article  PubMed  Google Scholar 

  7. Inge-Vechtomov, S. G., Zhouravleva, G. A., & Chernoff, Y. O. (2007). Biological roles of prion domains. Prion, 1(4), 228–235.

    Article  PubMed  Google Scholar 

  8. Shkundina, I. S., & Ter-Avanesyan, M. D. (2007). Prions. Biochemistry, 72(13), 1519–1536.

    PubMed  CAS  Google Scholar 

  9. Mehrpour, M., & Codogno, P. (2010). Prion protein: From physiology to cancer biology. Cancer Letters, 290(1), 1–23.

    Article  PubMed  CAS  Google Scholar 

  10. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  PubMed  CAS  Google Scholar 

  11. Meslin, F., Conforti, R., Mazouni, C., Morel, N., Tomasic, G., Drusch, F., et al. (2007). Efficacy of adjuvant chemotherapy according to prion protein expression in patients with estrogen receptor-negative breast cancer. Annals of Oncology, 18(11), 1793–1798.

    Article  PubMed  CAS  Google Scholar 

  12. Du, J., Pan, Y., Shi, Y., Guo, C., Jin, X., Sun, L., et al. (2005). Overexpression and significance of prion protein in gastric cancer and multidrug-resistant gastric carcinoma cell line SGC7901/ADR. International Journal of Cancer, 113(2), 213–220.

    Article  CAS  Google Scholar 

  13. Antonacopoulou, A. G., Palli, M., Marousi, S., Dimitrakopoulos, F. I., Kyriakopoulou, U., Tsamandas, A. C., et al. (2010). Prion protein expression and the M129V polymorphism of the PRNP gene in patients with colorectal cancer. Molecular Carcinogenesis, 49(7), 693–699.

    PubMed  CAS  Google Scholar 

  14. Li, C., Yu, S., Nakamura, F., Yin, S., Xu, J., Petrolla, A. A., et al. (2009). Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. Journal of Clinical Investigation, 119(9), 2725–2736.

    Article  PubMed  CAS  Google Scholar 

  15. Sy, M. S., Li, C., Yu, S., & Xin, W. (2010). The fatal attraction between pro-prion and filamin A: Prion as a marker in human cancers. Biomarkers in Medicine, 4(3), 453–464.

    Article  PubMed  CAS  Google Scholar 

  16. Sauer, H., Dagdanova, A., Hescheler, J., & Wartenberg, M. (1999). Redox-regulation of intrinsic prion expression in multicellular prostate tumor spheroids. Free Radical Biology & Medicine, 27(11–12), 1276–1283.

    Article  CAS  Google Scholar 

  17. Antonacopoulou, A. G., Grivas, P. D., Skarlas, L., Kalofonos, M., Scopa, C. D., & Kalofonos, H. P. (2008). POLR2F, ATP6V0A1 and PRNP expression in colorectal cancer: New molecules with prognostic significance? Anticancer Research, 28(2B), 1221–1227.

    PubMed  CAS  Google Scholar 

  18. Han, H., Bearss, D. J., Browne, L. W., Calaluce, R., Nagle, R. B., & Von Hoff, D. D. (2002). Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Research, 62(10), 2890–2896.

    PubMed  CAS  Google Scholar 

  19. Giles, K., Glidden, D. V., Beckwith, R., Seoanes, R., Peretz, D., DeArmond, S. J., et al. (2008). Resistance of bovine spongiform encephalopathy (BSE) prions to inactivation. PLoS Pathogens, 4(11), e1000206.

    Article  PubMed  CAS  Google Scholar 

  20. Supattapone, S., Bouzamondo, E., Ball, H. L., Wille, H., Nguyen, H. O., Cohen, F. E., et al. (2001). A protease-resistant 61-residue prion peptide causes neurodegeneration in transgenic mice. Molecular and Cellular Biology, 21(7), 2608–2616.

    Article  PubMed  CAS  Google Scholar 

  21. Alberti, S., Halfmann, R., King, O., Kapila, A., & Lindquist, S. (2009). A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell, 137(1), 146–158.

    Article  PubMed  CAS  Google Scholar 

  22. Halfmann, R., & Lindquist, S. (2010). Epigenetics in the extreme: Prions and the inheritance of environmentally acquired traits. Science, 330(6004), 629–632.

    Article  PubMed  CAS  Google Scholar 

  23. Li, L., & Lindquist, S. (2000). Creating a protein-based element of inheritance. Science, 287(5453), 661–664.

    Article  PubMed  CAS  Google Scholar 

  24. Brachmann, A., Baxa, U., & Wickner, R. B. (2005). Prion generation in vitro: Amyloid of Ure2p is infectious. EMBO Journal, 24(17), 3082–3092.

    Article  PubMed  CAS  Google Scholar 

  25. Patel, B. K., & Liebman, S. W. (2007). “Prion-proof” for [PIN +]: Infection with in vitro-made amyloid aggregates of Rnq1p-(132–405) induces [PIN +]. Journal of Molecular Biology, 365(3), 773–782.

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka, M., Chien, P., Naber, N., Cooke, R., & Weissman, J. S. (2004). Conformational variations in an infectious protein determine prion strain differences. Nature, 428(6980), 323–328.

    Article  PubMed  CAS  Google Scholar 

  27. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G., & Liebman, S. W. (1996). Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics, 144(4), 1375–1386.

    PubMed  CAS  Google Scholar 

  28. Cox, B. S. (1965). [Psi], a cytoplasmic suppressor of super-suppressor in yeast. Heredity, 20(4), 505–521.

    Article  Google Scholar 

  29. True, H. L., & Lindquist, S. L. (2000). A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature, 407(6803), 477–483.

    Article  PubMed  CAS  Google Scholar 

  30. Chernoff, Y. O., Galkin, A. P., Lewitin, E., Chernova, T. A., Newnam, G. P., & Belenkiy, S. M. (2000). Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Molecular Microbiology, 35(4), 865–876.

    Article  PubMed  CAS  Google Scholar 

  31. Nakayashiki, T., Kurtzman, C. P., Edskes, H. K., & Wickner, R. B. (2005). Yeast prions [URE3] and [PSI +] are diseases. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10575–10580.

    Article  PubMed  CAS  Google Scholar 

  32. Resende, C. G., Outeiro, T. F., Sands, L., Lindquist, S., & Tuite, M. F. (2003). Prion protein gene polymorphisms in Saccharomyces cerevisiae. Molecular Microbiology, 49(4), 1005–1017.

    Article  PubMed  CAS  Google Scholar 

  33. McGlinchey, R. P., Kryndushkin, D., & Wickner, R. B. (2011). Suicidal [PSI +] is a lethal yeast prion. Proceedings of the National Academy of Sciences of the United States of America, 108(13), 5337–5341.

    Article  PubMed  CAS  Google Scholar 

  34. Lacroute, F. (1971). Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. Journal of Bacteriology, 106(2), 519–522.

    PubMed  CAS  Google Scholar 

  35. Wickner, R. B. (1994). [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae. Science, 264(5158), 566–569.

    Article  PubMed  CAS  Google Scholar 

  36. Brown, J. C., & Lindquist, S. (2009). A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes & Development, 23(19), 2320–2332.

    Article  CAS  Google Scholar 

  37. Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O., & Liebman, S. W. (1997). Genetic and environmental factors affecting the de novo appearance of the [PSI +] prion in Saccharomyces cerevisiae. Genetics, 147(2), 507–519.

    PubMed  CAS  Google Scholar 

  38. Derkatch, I. L., Bradley, M. E., Hong, J. Y., & Liebman, S. W. (2001). Prions affect the appearance of other prions: The story of [PIN +]. Cell, 106(2), 171–182.

    Article  PubMed  CAS  Google Scholar 

  39. Bagriantsev, S., & Liebman, S. W. (2004). Specificity of prion assembly in vivo. [PSI +] and [PIN +] form separate structures in yeast. Journal of Biological Chemistry, 279(49), 51042–51048.

    Article  PubMed  CAS  Google Scholar 

  40. Du, Z., Park, K. W., Yu, H., Fan, Q., & Li, L. (2008). Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nature Genetics, 40(4), 460–465.

    Article  PubMed  CAS  Google Scholar 

  41. Patel, B. K., Gavin-Smyth, J., & Liebman, S. W. (2009). The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nature Cell Biology, 11(3), 344–349.

    Article  PubMed  CAS  Google Scholar 

  42. Rogoza, T., Goginashvili, A., Rodionova, S., Ivanov, M., Viktorovskaya, O., Rubel, A., et al. (2010). Non-Mendelian determinant [ISP +] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proceedings of the National Academy of Sciences of the United States of America, 107(23), 10573–10577.

    Article  PubMed  CAS  Google Scholar 

  43. Tuite, M. F., & Cox, B. S. (2009). Prions remodel gene expression in yeast. Nature Cell Biology, 11(3), 241–243.

    Article  PubMed  CAS  Google Scholar 

  44. Coustou, V., Deleu, C., Saupe, S., & Begueret, J. (1997). The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proceedings of the National Academy of Sciences of the United States of America, 94(18), 9773–9778.

    Article  PubMed  CAS  Google Scholar 

  45. Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., et al. (2005). Correlation of structural elements and infectivity of the HET-s prion. Nature, 435(7043), 844–848.

    Article  PubMed  CAS  Google Scholar 

  46. Loubradou, G., & Turcq, B. (2000). Vegetative incompatibility in filamentous fungi: A roundabout way of understanding the phenomenon. Research in Microbiology, 151(4), 239–245.

    Article  PubMed  CAS  Google Scholar 

  47. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B., & Saupe, S. J. (2002). Amyloid aggregates of the HET-s prion protein are infectious. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7402–7407.

    Article  PubMed  CAS  Google Scholar 

  48. Roberts, B. T., & Wickner, R. B. (2003). Heritable activity: A prion that propagates by covalent autoactivation. Genes & Development, 17(17), 2083–2087.

    Article  CAS  Google Scholar 

  49. Kicka, S., Bonnet, C., Sobering, A. K., Ganesan, L. P., & Silar, P. (2006). A mitotically inheritable unit containing a MAP kinase module. Proceedings of the National Academy of Sciences of the United States of America, 103(36), 13445–13450.

    Article  PubMed  CAS  Google Scholar 

  50. Brinkman, J. A., & El-Ashry, D. (2009). ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. Journal of Mammary Gland Biology and Neoplasia, 14(1), 67–78.

    Article  PubMed  Google Scholar 

  51. Derkatch, I. L., Bradley, M. E., Masse, S. V., Zadorsky, S. P., Polozkov, G. V., Inge-Vechtomov, S. G., et al. (2000). Dependence and independence of [PSI +] and [PIN +]: A two-prion system in yeast? EMBO Journal, 19(9), 1942–1952.

    Article  PubMed  CAS  Google Scholar 

  52. Tyedmers, J., Madariaga, M. L., & Lindquist, S. (2008). Prion switching in response to environmental stress. PLoS Biology, 6(11), e294.

    Article  PubMed  CAS  Google Scholar 

  53. Chernoff, Y. O. (2007). Stress and prions: Lessons from the yeast model. FEBS Letters, 581(19), 3695–3701.

    Article  PubMed  CAS  Google Scholar 

  54. Romanova, N. V., & Chernoff, Y. O. (2009). Hsp104 and prion propagation. Protein and Peptide Letters, 16(6), 598–605.

    Article  PubMed  CAS  Google Scholar 

  55. Newnam, G. P., Birchmore, J. L., & Chernoff, Y. O. (2011). Destabilization and recovery of a yeast prion after mild heat shock. Journal of Molecular Biology, 408(3), 432–448.

    Article  PubMed  CAS  Google Scholar 

  56. Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H. P., DeArmond, S. J., et al. (1992). Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature, 356(6370), 577–582.

    Article  PubMed  CAS  Google Scholar 

  57. Bueler, H., Aguzzi, A., Sailer, A., Greiner, R. A., Autenried, P., Aguet, M., et al. (1993). Mice devoid of PrP are resistant to scrapie. Cell, 73(7), 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  58. Bruce, K. L., & Chernoff, Y. O. (2011). Sequence specificity and fidelity of prion transmission in yeast. Seminars in Cell & Developmental Biology, 22(5), 444–451.

    Article  CAS  Google Scholar 

  59. Lawson, V. A., Priola, S. A., Wehrly, K., & Chesebro, B. (2001). N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. Journal of Biological Chemistry, 276(38), 35265–35271.

    Article  PubMed  CAS  Google Scholar 

  60. Moore, R. A., Herzog, C., Errett, J., Kocisko, D. A., Arnold, K. M., Hayes, S. F., et al. (2006). Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation. Protein Science, 15(3), 609–619.

    Article  PubMed  CAS  Google Scholar 

  61. Parham, S. N., Resende, C. G., & Tuite, M. F. (2001). Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO Journal, 20(9), 2111–2119.

    Article  PubMed  CAS  Google Scholar 

  62. Makarava, N., & Baskakov, I. V. (2008). The same primary structure of the prion protein yields two distinct self-propagating states. Journal of Biological Chemistry, 283(23), 15988–15996.

    Article  PubMed  CAS  Google Scholar 

  63. Collinge, J., Sidle, K. C., Meads, J., Ironside, J., & Hill, A. F. (1996). Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature, 383(6602), 685–690.

    Article  PubMed  CAS  Google Scholar 

  64. Yap, Y. H., & Say, Y. H. (2011). Resistance against apoptosis by the cellular prion protein is dependent on its glycosylation status in oral HSC-2 and colon LS 174T cancer cells. Cancer Letters, 306(1), 111–119.

    Article  PubMed  CAS  Google Scholar 

  65. Si, K., Choi, Y. B., White-Grindley, E., Majumdar, A., & Kandel, E. R. (2010). Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell, 140(3), 421–435.

    Article  PubMed  CAS  Google Scholar 

  66. Si, K., Lindquist, S., & Kandel, E. R. (2003). A neuronal isoform of the aplysia CPEB has prion-like properties. Cell, 115(7), 879–891.

    Article  PubMed  CAS  Google Scholar 

  67. Ter-Avanesyan, M., Derkatch, I., Baskakov, I., & Kushnirov, V. (2005). Unraveling prion structures and biological functions. Genome Biology, 6(13), 366.

    Article  PubMed  Google Scholar 

  68. Heinrich, S. U., & Lindquist, S. (2011). Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB). Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2999–3004.

    Article  PubMed  CAS  Google Scholar 

  69. Burns, D. M., & Richter, J. D. (2008). CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes & Development, 22(24), 3449–3460.

    Article  CAS  Google Scholar 

  70. Burns, D. M., D'Ambrogio, A., Nottrott, S., & Richter, J. D. (2011). CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature, 473(7345), 105–108.

    Article  PubMed  CAS  Google Scholar 

  71. Kadnar, M. L. (2010). The complex prion domain of Rnq1 provides insight into transmission barriers and prion strain formation. Dissertation, New York University, New York, United States. http://proquest.umi.com/pqdlink?did=1981440581&Fmt=7&clientId=79356&RQT=309&VName=PQD.

  72. Maddelein, M. L., & Wickner, R. B. (1999). Two prion-inducing regions of Ure2p are nonoverlapping. Molecular and Cellular Biology, 19(6), 4516–4524.

    PubMed  CAS  Google Scholar 

  73. Serio, T. R., & Lindquist, S. L. (1999). [PSI +]: An epigenetic modulator of translation termination efficiency. Annual Review of Cell and Developmental Biology, 15, 661–703.

    Article  PubMed  CAS  Google Scholar 

  74. Michelitsch, M. D., & Weissman, J. S. (2000). A census of glutamine/asparagine-rich regions: Implications for their conserved function and the prediction of novel prions. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11910–11915.

    Article  PubMed  CAS  Google Scholar 

  75. Gabus, C., Derrington, E., Leblanc, P., Chnaiderman, J., Dormont, D., Swietnicki, W., et al. (2001). The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. Journal of Biological Chemistry, 276(22), 19301–19309.

    Article  PubMed  CAS  Google Scholar 

  76. Deleault, N. R., Lucassen, R. W., & Supattapone, S. (2003). RNA molecules stimulate prion protein conversion. Nature, 425(6959), 717–720.

    Article  PubMed  CAS  Google Scholar 

  77. Silva, J. L., Vieira, T. C., Gomes, M. P., Bom, A. P., Lima, L. M., Freitas, M. S., et al. (2010). Ligand binding and hydration in protein misfolding: Insights from studies of prion and p53 tumor suppressor proteins. Accounts of Chemical Research, 43(2), 271–279.

    Article  PubMed  CAS  Google Scholar 

  78. Beaudoin, S., Vanderperre, B., Grenier, C., Tremblay, I., Leduc, F., & Roucou, X. (2009). A large ribonucleoprotein particle induced by cytoplasmic PrP shares striking similarities with the chromatoid body, an RNA granule predicted to function in posttranscriptional gene regulation. Biochimica et Biophysica Acta, 1793(2), 335–345.

    Article  PubMed  CAS  Google Scholar 

  79. Taneja, V., Maddelein, M. L., Talarek, N., Saupe, S. J., & Liebman, S. W. (2007). A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Molecular Cell, 27(1), 67–77.

    Article  PubMed  CAS  Google Scholar 

  80. Osherovich, L. Z., Cox, B. S., Tuite, M. F., & Weissman, J. S. (2004). Dissection and design of yeast prions. PLoS Biology, 2(4), E86.

    Article  PubMed  Google Scholar 

  81. Cordeiro, Y., Kraineva, J., Gomes, M. P., Lopes, M. H., Martins, V. R., Lima, L. M., et al. (2005). The amino-terminal PrP domain is crucial to modulate prion misfolding and aggregation. Biophysical Journal, 89(4), 2667–2676.

    Article  PubMed  CAS  Google Scholar 

  82. Rogers, M., Yehiely, F., Scott, M., & Prusiner, S. B. (1993). Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3182–3186.

    Article  PubMed  CAS  Google Scholar 

  83. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., & Liebman, S. W. (1995). Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi +]. Science, 268(5212), 880–884.

    Article  PubMed  CAS  Google Scholar 

  84. Sun, G., Guo, M., Shen, A., Mei, F., Peng, X., Gong, R., et al. (2005). Bovine PrPC directly interacts with alphaB-crystalline. FEBS Letters, 579(24), 5419–5424.

    Article  PubMed  CAS  Google Scholar 

  85. Jones, G. W., & Tuite, M. F. (2005). Chaperoning prions: The cellular machinery for propagating an infectious protein? Bioessays, 27(8), 823–832.

    Article  PubMed  CAS  Google Scholar 

  86. Rekas, A., Adda, C. G., Aquilina, J. A., Barnham, K. J., Sunde, M., Galatis, D., et al. (2004). Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: Effects on amyloid fibril formation and chaperone activity. Journal of Molecular Biology, 340(5), 1167–1183.

    Article  PubMed  CAS  Google Scholar 

  87. Borchsenius, A. S., Muller, S., Newnam, G. P., Inge-Vechtomov, S. G., & Chernoff, Y. O. (2006). Prion variant maintained only at high levels of the Hsp104 disaggregase. Current Genetics, 49(1), 21–29.

    Article  PubMed  CAS  Google Scholar 

  88. Borchsenius, A. S., Wegrzyn, R. D., Newnam, G. P., Inge-Vechtomov, S. G., & Chernoff, Y. O. (2001). Yeast prion protein derivative defective in aggregate shearing and production of new “seeds”. EMBO Journal, 20(23), 6683–6691.

    Article  PubMed  CAS  Google Scholar 

  89. Cox, B. S., Byrne, L. J., & Tuite, M. F. (2007). Prion stability. Prion, 1(3), 170–178.

    Article  PubMed  Google Scholar 

  90. Tanaka, M., Collins, S. R., Toyama, B. H., & Weissman, J. S. (2006). The physical basis of how prion conformations determine strain phenotypes. Nature, 442(7102), 585–589.

    Article  PubMed  CAS  Google Scholar 

  91. Bailleul, P. A., Newnam, G. P., Steenbergen, J. N., & Chernoff, Y. O. (1999). Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics, 153(1), 81–94.

    PubMed  CAS  Google Scholar 

  92. Baron, G. S., Wehrly, K., Dorward, D. W., Chesebro, B., & Caughey, B. (2002). Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes. EMBO Journal, 21(5), 1031–1040.

    Article  PubMed  CAS  Google Scholar 

  93. Chernova, T. A., Romanyuk, A. V., Karpova, T. S., Shanks, J. R., Ali, M., Moffatt, N., et al. (2011). Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Molecular Cell, 43(2), 242–252.

    Article  PubMed  CAS  Google Scholar 

  94. Ganusova, E. E., Ozolins, L. N., Bhagat, S., Newnam, G. P., Wegrzyn, R. D., Sherman, M. Y., et al. (2006). Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Molecular and Cellular Biology, 26(2), 617–629.

    Article  PubMed  CAS  Google Scholar 

  95. Shyng, S. L., Huber, M. T., & Harris, D. A. (1993). A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. Journal of Biological Chemistry, 268(21), 15922–15928.

    PubMed  CAS  Google Scholar 

  96. Tyedmers, J., Treusch, S., Dong, J., McCaffery, J. M., Bevis, B., & Lindquist, S. (2010). Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8633–8638.

    Article  PubMed  CAS  Google Scholar 

  97. Bailleul-Winslett, P. A., Newnam, G. P., Wegrzyn, R. D., & Chernoff, Y. O. (2000). An antiprion effect of the anticytoskeletal drug latrunculin A in yeast. Gene Expression, 9(3), 145–156.

    PubMed  CAS  Google Scholar 

  98. Olson, M. F., & Sahai, E. (2009). The actin cytoskeleton in cancer cell motility. Clinical & Experimental Metastasis, 26(4), 273–287.

    Article  Google Scholar 

  99. Liang, J., Pan, Y. L., Ning, X. X., Sun, L. J., Lan, M., Hong, L., et al. (2006). Overexpression of PrPC and its antiapoptosis function in gastric cancer. Tumour Biology, 27(2), 84–91.

    Article  PubMed  CAS  Google Scholar 

  100. Diarra-Mehrpour, M., Arrabal, S., Jalil, A., Pinson, X., Gaudin, C., Pietu, G., et al. (2004). Prion protein prevents human breast carcinoma cell line from tumor necrosis factor alpha-induced cell death. Cancer Research, 64(2), 719–727.

    Article  PubMed  CAS  Google Scholar 

  101. Lang, G. I., & Murray, A. W. (2008). Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics, 178(1), 67–82.

    Article  PubMed  CAS  Google Scholar 

  102. Fernandez-Bellot, E., Guillemet, E., & Cullin, C. (2000). The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO Journal, 19(13), 3215–3222.

    Article  PubMed  CAS  Google Scholar 

  103. Deng, M., Chen, P. C., Xie, S., Zhao, J., Gong, L., Liu, J., et al. (2010). The small heat shock protein alphaA-crystallin is expressed in pancreas and acts as a negative regulator of carcinogenesis. Biochimica et Biophysica Acta, 1802(7–8), 621–631.

    PubMed  CAS  Google Scholar 

  104. Shyu, W. C., Harn, H. J., Saeki, K., Kubosaki, A., Matsumoto, Y., Onodera, T., et al. (2002). Molecular modulation of expression of prion protein by heat shock. Molecular Neurobiology, 26(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  105. Shyu, W. C., Kao, M. C., Chou, W. Y., Hsu, Y. D., & Soong, B. W. (2000). Creutzfeldt-Jakob disease: Heat shock protein 70 mRNA levels in mononuclear blood cells and clinical study. Journal of Neurology, 247(12), 929–934.

    Article  PubMed  CAS  Google Scholar 

  106. Liang, J., Pan, Y., Zhang, D., Guo, C., Shi, Y., Wang, J., et al. (2007). Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. The FASEB Journal, 21(9), 2247–2256.

    Article  CAS  Google Scholar 

  107. Fulda, S. (2009). Tumor resistance to apoptosis. International Journal of Cancer, 124(3), 511–515.

    Article  CAS  Google Scholar 

  108. Roucou, X., Giannopoulos, P. N., Zhang, Y., Jodoin, J., Goodyer, C. G., & LeBlanc, A. (2005). Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death and Differentiation, 12(7), 783–795.

    Article  PubMed  CAS  Google Scholar 

  109. Dewson, G., & Kluck, R. M. (2009). Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science, 122(Pt 16), 2801–2808.

    Article  PubMed  CAS  Google Scholar 

  110. Kurschner, C., & Morgan, J. I. (1995). The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Research. Molecular Brain Research, 30(1), 165–168.

    Article  PubMed  CAS  Google Scholar 

  111. Kurschner, C., & Morgan, J. I. (1996). Analysis of interaction sites in homo- and heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Research. Molecular Brain Research, 37(1–2), 249–258.

    Article  PubMed  CAS  Google Scholar 

  112. Meslin, F., Hamai, A., Gao, P., Jalil, A., Cahuzac, N., Chouaib, S., et al. (2007). Silencing of prion protein sensitizes breast adriamycin-resistant carcinoma cells to TRAIL-mediated cell death. Cancer Research, 67(22), 10910–10919.

    Article  PubMed  CAS  Google Scholar 

  113. Mao, Y. W., Liu, J. P., Xiang, H., & Li, D. W. (2004). Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death and Differentiation, 11(5), 512–526.

    Article  PubMed  CAS  Google Scholar 

  114. Ashkenazi, A., & Herbst, R. S. (2008). To kill a tumor cell: The potential of proapoptotic receptor agonists. Journal of Clinical Investigation, 118(6), 1979–1990.

    Article  PubMed  CAS  Google Scholar 

  115. Guillot-Sestier, M. V., Sunyach, C., Druon, C., Scarzello, S., & Checler, F. (2009). The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. Journal of Biological Chemistry, 284(51), 35973–35986.

    Article  PubMed  CAS  Google Scholar 

  116. Kristiansen, M., Messenger, M. J., Klohn, P. C., Brandner, S., Wadsworth, J. D., Collinge, J., et al. (2005). Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis. Journal of Biological Chemistry, 280(46), 38851–38861.

    Article  PubMed  CAS  Google Scholar 

  117. Liang, J., Ge, F. L., Lu, Y. Y., Wang, J., Zhai, H. H., Yao, L. P., et al. (2006). Role of PrPC related to apoptosis. Experimental and Clinical Sciences International Journal, 5, 11–24.

    Google Scholar 

  118. Paitel, E., Alves da Costa, C., Vilette, D., Grassi, J., & Checler, F. (2002). Overexpression of PrPC triggers caspase 3 activation: Potentiation by proteasome inhibitors and blockade by anti-PrP antibodies. Journal of Neurochemistry, 83(5), 1208–1214.

    Article  PubMed  CAS  Google Scholar 

  119. Kamradt, M. C., Chen, F., & Cryns, V. L. (2001). The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. Journal of Biological Chemistry, 276(19), 16059–16063.

    Article  PubMed  CAS  Google Scholar 

  120. Hao, S., Ye, Z., Li, F., Meng, Q., Qureshi, M., Yang, J., et al. (2006). Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Experimental Oncology, 28(2), 126–131.

    PubMed  CAS  Google Scholar 

  121. Fevrier, B., Vilette, D., Laude, H., & Raposo, G. (2005). Exosomes: A bubble ride for prions? Traffic, 6(1), 10–17.

    Article  PubMed  CAS  Google Scholar 

  122. Harris, J. F., Chambers, A. F., Hill, R. P., & Ling, V. (1982). Metastatic variants are generated spontaneously at a high rate in mouse KHT tumor. Proceedings of the National Academy of Sciences of the United States of America, 79(18), 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  123. Stackpole, C. W. (1983). Generation of phenotypic diversity in the B16 mouse melanoma relative to spontaneous metastasis. Cancer Research, 43(7), 3057–3065.

    PubMed  CAS  Google Scholar 

  124. Schirrmacher, V. (1980). Shifts in tumor cell phenotypes induced by signals from the microenvironment. Relevance for the immunobiology of cancer metastasis. Immunobiology, 157(2), 89–98.

    Article  PubMed  CAS  Google Scholar 

  125. Allen, K. D., Chernova, T. A., Tennant, E. P., Wilkinson, K. D., & Chernoff, Y. O. (2007). Effects of ubiquitin system alterations on the formation and loss of a yeast prion. Journal of Biological Chemistry, 282(5), 3004–3013.

    Article  PubMed  CAS  Google Scholar 

  126. Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K., & Zink, A. D. (1999). Evidence for a protein mutator in yeast: Role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Molecular and Cellular Biology, 19(12), 8103–8112.

    PubMed  CAS  Google Scholar 

  127. Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38(9), 2651–2660.

    PubMed  CAS  Google Scholar 

  128. Halfmann, R., Alberti, S., & Lindquist, S. (2010). Prions, protein homeostasis, and phenotypic diversity. Trends in Cell Biology, 20(3), 125–133.

    Article  PubMed  CAS  Google Scholar 

  129. Pan, Y., Zhao, L., Liang, J., Liu, J., Shi, Y., Liu, N., et al. (2006). Cellular prion protein promotes invasion and metastasis of gastric cancer. The FASEB Journal, 20(11), 1886–1888.

    Article  CAS  Google Scholar 

  130. Liang, J., Ge, F., Guo, C., Luo, G., Wang, X., Han, G., et al. (2009). Inhibition of PI3K/Akt partially leads to the inhibition of PrPC-induced drug resistance in gastric cancer cells. FEBS Journal, 276(3), 685–694.

    Article  PubMed  CAS  Google Scholar 

  131. Harris, C. C. (1996). p53 tumor suppressor gene: From the basic research laboratory to the clinic—An abridged historical perspective. Carcinogenesis, 17(6), 1187–1198.

    Article  PubMed  CAS  Google Scholar 

  132. Hoh, J., Jin, S., Parrado, T., Edington, J., Levine, A. J., & Ott, J. (2002). The p53MH algorithm and its application in detecting p53-responsive genes. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8467–8472.

    Article  PubMed  CAS  Google Scholar 

  133. Mirza, A., Wu, Q., Wang, L., McClanahan, T., Bishop, W. R., Gheyas, F., et al. (2003). Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene, 22(23), 3645–3654.

    Article  PubMed  CAS  Google Scholar 

  134. Higashimoto, Y., Asanomi, Y., Takakusagi, S., Lewis, M. S., Uosaki, K., Durell, S. R., et al. (2006). Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry, 45(6), 1608–1619.

    Article  PubMed  CAS  Google Scholar 

  135. Ishimaru, D., Andrade, L. R., Teixeira, L. S., Quesado, P. A., Maiolino, L. M., Lopez, P. M., et al. (2003). Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry, 42(30), 9022–9027.

    Article  PubMed  CAS  Google Scholar 

  136. Lee, A. S., Galea, C., DiGiammarino, E. L., Jun, B., Murti, G., Ribeiro, R. C., et al. (2003). Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. Journal of Molecular Biology, 327(3), 699–709.

    Article  PubMed  CAS  Google Scholar 

  137. Rigacci, S., Bucciantini, M., Relini, A., Pesce, A., Gliozzi, A., Berti, A., et al. (2008). The (1–63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Biophysical Journal, 94(9), 3635–3646.

    Article  PubMed  CAS  Google Scholar 

  138. Milner, J., & Medcalf, E. A. (1991). Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell, 65(5), 765–774.

    Article  PubMed  CAS  Google Scholar 

  139. Muras, A. G., Hajj, G. N., Ribeiro, K. B., Nomizo, R., Nonogaki, S., Chammas, R., et al. (2009). Prion protein ablation increases cellular aggregation and embolization contributing to mechanisms of metastasis. International Journal of Cancer, 125(7), 1523–1531.

    Article  CAS  Google Scholar 

  140. Collinge, J., Whitfield, J., McKintosh, E., Beck, J., Mead, S., Thomas, D. J., et al. (2006). Kuru in the 21st century—An acquired human prion disease with very long incubation periods. Lancet, 367(9528), 2068–2074.

    Article  PubMed  Google Scholar 

  141. McEwan, J. F., Windsor, M. L., & Cullis-Hill, S. D. (2009). Antibodies to prion protein inhibit human colon cancer cell growth. Tumour Biology, 30(3), 141–147.

    Article  PubMed  CAS  Google Scholar 

  142. Cleary, J. M., & Shapiro, G. I. (2010). Development of phosphoinositide-3 kinase pathway inhibitors for advanced cancer. Current Oncology Reports, 12(2), 87–94.

    Article  PubMed  CAS  Google Scholar 

  143. Shin, J. Y., Kim, J. O., Lee, S. K., Chae, H. S., & Kang, J. H. (2010). LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein–Barr virus-positive gastric cancer cells. BMC Cancer, 10, 425.

    Article  PubMed  CAS  Google Scholar 

  144. Ng, S. S. W., Tsao, M. S., Chow, S., & Hedley, D. W. (2000). Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Research, 60(19), 5451–5455.

    PubMed  CAS  Google Scholar 

  145. Sun, Z. J., Chen, G., Hu, X., Zhang, W., Liu, Y., Zhu, L. X., et al. (2010). Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: Its inhibition by quercetin. Apoptosis, 15(7), 850–863.

    Article  PubMed  CAS  Google Scholar 

  146. Wang, Y. A., Johnson, S. K., Brown, B. L., McCarragher, L. M., Al-Sakkaf, K., Royds, J. A., et al. (2008). Enhanced anti-cancer effect of a phosphatidylinositol-3 kinase inhibitor and doxorubicin on human breast epithelial cell lines with different p53 and oestrogen receptor status. International Journal of Cancer, 123(7), 1536–1544.

    Article  CAS  Google Scholar 

  147. Liu, J. J., & Duan, R. D. (2009). LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells. Anticancer Research, 29(8), 2987–2991.

    PubMed  CAS  Google Scholar 

  148. Mohapatra, S., Chu, B., Zhao, X., Djeu, J., Cheng, J. Q., & Pledger, W. J. (2009). Apoptosis of metastatic prostate cancer cells by a combination of cyclin-dependent kinase and AKT inhibitors. The International Journal of Biochemistry & Cell Biology, 41(3), 595–602.

    Article  CAS  Google Scholar 

  149. Krammer, C., Kryndushkin, D., Suhre, M. H., Kremmer, E., Hofmann, A., Pfeifer, A., et al. (2009). The yeast Sup35NM domain propagates as a prion in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 106(2), 462–467.

    Article  PubMed  CAS  Google Scholar 

  150. Bach, S., Talarek, N., Andrieu, T., Vierfond, J. M., Mettey, Y., Galons, H., et al. (2003). Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nature Biotechnology, 21(9), 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  151. Grimminger, V., Richter, K., Imhof, A., Buchner, J., & Walter, S. (2004). The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. Journal of Biological Chemistry, 279(9), 7378–7383.

    Article  PubMed  CAS  Google Scholar 

  152. Korth, C., May, B. C., Cohen, F. E., & Prusiner, S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9836–9841.

    Article  PubMed  CAS  Google Scholar 

  153. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., et al. (2002). The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 43(1), 33–56.

    Article  PubMed  Google Scholar 

  154. Gottesman, M. M., & Ling, V. (2006). The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Letters, 580(4), 998–1009.

    Article  PubMed  CAS  Google Scholar 

  155. Li, Q. Q., Cao, X. X., Xu, J. D., Chen, Q., Wang, W. J., Tang, F., et al. (2009). The role of P-glycoprotein/cellular prion protein interaction in multidrug-resistant breast cancer cells treated with paclitaxel. Cellular and Molecular Life Sciences, 66(3), 504–515.

    Article  PubMed  CAS  Google Scholar 

  156. Hennequin, E., Delvincourt, C., Pourny, C., & Jardillier, J. C. (1993). Expression of mdr1 gene in human breast primary tumors and metastases. Breast Cancer Research and Treatment, 26(3), 267–274.

    Article  PubMed  CAS  Google Scholar 

  157. Isonishi, S., Hom, D. K., Thiebaut, F. B., Mann, S. C., Andrews, P. A., Basu, A., et al. (1991). Expression of the c-Ha-ras oncogene in mouse NIH 3T3 cells induces resistance to cisplatin. Cancer Research, 51(21), 5903–5909.

    PubMed  CAS  Google Scholar 

  158. Li, Q. Q., Wang, W. J., Xu, J. D., Cao, X. X., Chen, Q., Yang, J. M., et al. (2007). Up-regulation of CD147 and matrix metalloproteinase-2, -9 induced by P-glycoprotein substrates in multidrug resistant breast cancer cells. Cancer Science, 98(11), 1767–1774.

    Article  PubMed  CAS  Google Scholar 

  159. Yang, J. M., Xu, Z., Wu, H., Zhu, H., Wu, X., & Hait, W. N. (2003). Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Molecular Cancer Research, 1(6), 420–427.

    PubMed  CAS  Google Scholar 

  160. Shorter, J. (2010). Emergence and natural selection of drug-resistant prions. Molecular BioSystems, 6(7), 1115–1130.

    Article  PubMed  CAS  Google Scholar 

  161. Cooper, M., & Mishima, Y. (1972). Increased in vitro radio-sensitivity of malignant melanoma induced by the in vivo administration of chlorpromazine. British Journal of Dermatology, 86(5), 491–494.

    Article  PubMed  CAS  Google Scholar 

  162. Yde, C. W., Clausen, M. P., Bennetzen, M. V., Lykkesfeldt, A. E., Mouritsen, O. G., & Guerra, B. (2009). The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells. Anti-Cancer Drugs, 20(8), 723–735.

    Article  PubMed  CAS  Google Scholar 

  163. Gao, J. M., Zhou, X. B., Xiao, X. L., Zhang, J., Chen, L., Gao, C., et al. (2006). Influence of guanidine on proteinase K resistance in vitro and infectivity of scrapie prion protein PrPSc. Acta Virologica, 50(1), 25–32.

    PubMed  CAS  Google Scholar 

  164. Callahan, M. A., Xiong, L., & Caughey, B. (2001). Reversibility of scrapie-associated prion protein aggregation. Journal of Biological Chemistry, 276(30), 28022–28028.

    Article  PubMed  CAS  Google Scholar 

  165. Armitage, P., & Doll, R. (1954). The age distribution of cancer and a multi-stage theory of carcinogenesis. British Journal of Cancer, 8(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  166. Frank, S. A. (2005). Age-specific incidence of inherited versus sporadic cancers: A test of the multistage theory of carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(4), 1071–1075.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research grant funding from the Australian Research Council (ARC DP110100389) to ALM, MQW, and YOC; the National Health and Medical Research Council (Program Grant ID: 442903) to KK; a Dr. Jian Zhou Smart State Fellowship (Queensland State Government), the NH&MRC, and Cancer Council Queensland to MQW; and the National Institutes of Health (R01GM58763) to YOC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. K. Khanna or A. L. Munn.

Additional information

H. Antony and A. P. Wiegmans made an equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony, H., Wiegmans, A.P., Wei, M.Q. et al. Potential roles for prions and protein-only inheritance in cancer. Cancer Metastasis Rev 31, 1–19 (2012). https://doi.org/10.1007/s10555-011-9325-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9325-9

Keywords

Navigation