Skip to main content

Advertisement

Log in

The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Nucleoside analogs are important components of treatment regimens for various malignancies. Nucleoside-specific membrane transporters mediate plasma membrane permeation of physiologic nucleosides and most nucleoside analogs, for which the initial event is cellular conversion of nucleosides to active agents. Understanding of the roles of nucleoside transporters in nucleoside drug toxicity and resistance will provide opportunities for potentiating anticancer efficacy and avoiding resistance. Because transportability is a possible determinant of toxicity and resistance of many nucleoside analogs, nucleoside transporter abundance might be a prognostic marker to assess drug resistance. Elucidation of the structural determinants of nucleoside analogs for interaction with transporter proteins as well as the structural features of transporter proteins required for permeant interaction and translocation will lead to “transportability guidelines” for the rational design and therapeutic application of nucleoside analogs as anticancer drugs. It should eventually be possible to develop clinical assays that predict sensitivity and/or resistance to nucleoside anti-cancer drugs and thus to identify those patient populations that will most likely benefit from optimal nucleoside analog treatments. This review discusses recent results from structure/function studies of human nucleoside transporters, the role of nucleoside transport processes in the cytotoxicity and resistance of several anticancer nucleoside analogs and strategies to improve the nucleoside transporter-related anticancer effects of nucleoside analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Belle, H. (1993). Nucleoside transport inhibition: A therapeutic approach to cardioprotection via adenosine? Cardiovascular Research, 27, 68–76.

    PubMed  Google Scholar 

  2. Baldwin, S. A., Mackey, J. R., Cass, C. E., & Young, J. D. (1999). Nucleoside transporters: Molecular biology and implications for therapeutic development. Molecular Medicine Today, 5, 216–224.

    PubMed  CAS  Google Scholar 

  3. Vickers, M. F., Young, J. D., Baldwin, S. A., & Cass, C. E. (2000). Nucleoside transporter proteins: Emerging target for drug discovery. Emerging Therapeutic Targets, 4, 515–539.

    CAS  Google Scholar 

  4. Galmarini, C. M., Mackey, J. R., & Dumontet, C. (2002). Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncology, 3, 415–424.

    PubMed  CAS  Google Scholar 

  5. Kong, W., Engel, K., & Wang, J. (2004). Mammalian nucleoside transporters. Current Drug Metabolism, 5, 63–84.

    PubMed  CAS  Google Scholar 

  6. Clarke, M. L., Mackey, J. R., Baldwin, S. A., Young, J. D., & Cass, C. E. (2002). The role of membrane transporters in cellular resistance to anticancer nucleoside drugs. Cancer Treatment and Research, 112, 27–47.

    PubMed  CAS  Google Scholar 

  7. Mackey, J. R., Jennings, L. L., Clarke, M. L., Santos, C. L., Dabbagh, L., Vsianska, M., et al. (2002). Immunohistochemical variation of human equilibrative nucleoside transporter 1 protein in primary breast cancers. Clinical Cancer Research, 8, 110–116.

    PubMed  CAS  Google Scholar 

  8. Mackey, J. R., Baldwin, S. A., Young, J. D., & Cass, C. E. (1998). Nucleoside transport and its significance for anticancer drug resistance. Drug Resistance Updates, 1, 310–324.

    PubMed  CAS  Google Scholar 

  9. Landfear, S. M. (2001). Molecular genetics of nucleoside transporters in Leishmania and African trypanosomes. Biochemical Pharmacology, 62, 149–155.

    PubMed  CAS  Google Scholar 

  10. Damaraju, V. L., Damaraju, S., Young, J. D., Baldwin, S. A., Mackey, J., Sawyer, M. B., et al. (2003). Nucleoside anticancer drugs: The role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene, 22, 7524–7536.

    PubMed  CAS  Google Scholar 

  11. de Koning, H. P., Bridges, D. J., & Burchmore, R. J. (2005). Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiology Reviews, 29, 987–1020.

    PubMed  Google Scholar 

  12. Pastor-Anglada, M., Cano-Soldado, P., Molina-Arcas, M., Lostao, M. P., Larrayoz, I., Martinez-Picado, J., et al. (2005). Cell entry and export of nucleoside analogues. Virus Research, 107, 151–164.

    PubMed  CAS  Google Scholar 

  13. Griffiths, M., Beaumont, N., Yao, S. Y., Sundaram, M., Boumah, C. E., Davies, A., et al. (1997) Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs [see comments]. Nat Med, 3, 89–93.

    PubMed  CAS  Google Scholar 

  14. Griffiths, M., Yao, S. Y., Abidi, F., Phillips, S. E., Cass, C. E., Young, J. D., et al. (1997). Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochemical Journal, 328, 739–743.

    PubMed  CAS  Google Scholar 

  15. Baldwin, S. A., Yao, S. Y., Hyde, R. J., Ng, A. M., Foppolo, S., Barnes, K., et al. (2005). Functional characterisation of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. Journal of Biological Chemistry, 280, 15880–15887.

    PubMed  CAS  Google Scholar 

  16. Baldwin, S. A., Beal, P. R., Yao, S. Y., King, A. E., Cass, C. E., & Young, J. D. (2004). The equilibrative nucleoside transporter family, SLC29. Pflugers Archiv, 447, 735–743.

    PubMed  CAS  Google Scholar 

  17. Ritzel, M. W., Yao, S. Y., Huang, M. Y., Elliott, J. F., Cass, C. E., & Young, J. D. (1997). Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). American Journal of Physiology, 272, C707–C714.

    PubMed  CAS  Google Scholar 

  18. Ritzel, M. W., Yao, S. Y., Ng, A. M., Mackey, J. R., Cass, C. E., & Young, J. D. (1998). Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Molecular Membrane Biology, 15, 203–211.

    PubMed  CAS  Google Scholar 

  19. Ritzel, M. W. L., Ng, A. M., Yao, S. Y. M., Graham, K., Loewen, S. K., Smith, K. M., et al. (2001). Molecularidentification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidinnNucleosides (system cib). Journal of Biological Chemistry, 276, 2914–2927.

    PubMed  CAS  Google Scholar 

  20. Crawford, C. R., Patel, D. H., Naeve, C., & Belt, J. A. (1998). Cloning of the human equilibrative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line. Journal of Biological Chemistry, 273, 5288–5293.

    PubMed  CAS  Google Scholar 

  21. Visser, F., Vickers, M. F., Ng, A. M., Baldwin, S. A., Young, J. D., & Cass, C. E. (2002). Mutation of residue 33 of human equilibrative nucleoside transporters 1 and 2 alters sensitivity to inhibition of transport by dilazep and dipyridamole. Journal of Biological Chemistry, 277, 395–401.

    PubMed  CAS  Google Scholar 

  22. Visser, F., Baldwin, S. A., Isaac, R. E., Young, J. D., & Cass, C. E. (2005). Identification and mutational analysis of amino acid residues involved in dipyridamole interactions with human and caenorhabditis elegans equilibrative nucleoside transporters. Journal of Biological Chemistry, 280, 11025–11034.

    PubMed  CAS  Google Scholar 

  23. Yao, S. Y., Ng, A. M., Vickers, M. F., Sundaram, M., Cass, C. E., Baldwin, S. A., et al. (2002). Functional and molecular characterization of nucleobase transport by recombinant human and rat equilibrative nucleoside transporters 1 and 2. Chimeric constructs reveal a role for the ENT2 helix 5–6 region in nucleobase translocation. Journal of Biological Chemistry, 277, 24938–24948.

    PubMed  CAS  Google Scholar 

  24. Acimovic, Y., & Coe, I. R. (2002). Molecular evolution of the equilibrative nucleoside transporter family: Identification of novel family members in prokaryotes and eukaryotes. Molecular Biology and Evolution, 19, 2199–2210.

    PubMed  CAS  Google Scholar 

  25. Hyde, R. J., Abidi, F., Griffiths, M., Yao, S. Y. M., Sundaram, M., Phillips, S. E. V., et al. (2000). Probing the structure/function relationships of human equilibrative nucleoside transporters using site-directed mutagenesis. Drug Development Research, 50, 38.

    Google Scholar 

  26. Engel, K., Zhou, M., & Wang, J. (2004). Identification and characterization of a novel monoamine transporter in the human brain. Journal of Biological Chemistry, 279, 50042–50049.

    PubMed  CAS  Google Scholar 

  27. Barnes, K., Dobrzynski, H., Foppolo, S., Beal, P. R., Ismat, F., Scullion, E. R., et al. (2006). Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circulation Research, 99, 510–519.

    PubMed  CAS  Google Scholar 

  28. Smith, K. M., Slugoski, M. D., Loewen, S. K., Ng, A. M., Yao, S. Y., Chen, X. Z., et al. (2005). The broadly selective human Na+/nucleoside cotransporter (hCNT3) exhibits novel cation-coupled nucleoside transport characteristics. Journal of Biological Chemistry, 280, 25436–25449.

    PubMed  CAS  Google Scholar 

  29. Wang, J., Su, S. F., Dresser, M. J., Schaner, M. E., Washington, C. B., & Giacomini, K. M. (1997). Na+-dependent purine nucleoside transporter from human kidney: Cloning and functional characterization. American Journal of Physiology, 273, F1058–F1065.

    PubMed  CAS  Google Scholar 

  30. Wang, J., Schaner, M. E., Thomassen, S., Su, S. F., Piquette-Miller, M., & Giacomini, K. M. (1997). Functional and molecular characteristics of Na(+)-dependent nucleoside transporters. Pharmaceutical Research, 14, 1524–1532.

    PubMed  CAS  Google Scholar 

  31. Griffith, D. A., & Jarvis, S. M. (1996). Nucleoside and nucleobase transport systems of mammalian cells. Biochimica et Biophysica Acta, 1286, 153–181.

    PubMed  CAS  Google Scholar 

  32. Lu, X., Gong, S., Monks, A., Zaharevitz, D., & Moscow, J. A. (2002). Correlation of nucleoside and nucleobase transporter gene expression with antimetabolite drug cytotoxicity. Journal of Experimental Therapeutics & Oncology, 2, 200–212.

    CAS  Google Scholar 

  33. Pennycooke, M., Chaudary, N., Shuralyova, I., Zhang, Y., & Coe, I. R. (2001). Differential expression of human nucleoside transporters in normal and tumor tissue. Biochemical and Biophysical Research Communications, 280, 951–959.

    PubMed  CAS  Google Scholar 

  34. Molina-Arcas, M., Bellosillo, B., Casado, F. J., Montserrat, E., Gil, J., Colomer, D., et al. (2003). Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia. Blood, 101, 2328–2334.

    PubMed  CAS  Google Scholar 

  35. Hamilton, S. R., Yao, S. Y., Ingram, J. C., Hadden, D. A., Ritzel, M. W., Gallagher, M. P., et al. (2001). Subcellular distribution and membrane topology of the mammalian concentrative Na+-nucleoside cotransporter rCNT1. Journal of Biological Chemistry, 276, 27981–27988.

    PubMed  CAS  Google Scholar 

  36. Pastor-Anglada, M., Casado, F. J., Valdes, R., Mata, J., Garcia-Manteiga, J., & Molina, M. (2001). Complex regulation of nucleoside transporter expression in epithelial and immune system cells. Molecular Membrane Biology, 18, 81–85.

    PubMed  CAS  Google Scholar 

  37. Felipe, A., Valdes, R., Santo, B., Lloberas, J., Casado, J., & Pastor-Anglada, M. (1998). Na+-dependent nucleoside transport in liver: Two different isoforms from the same gene family are expressed in liver cells. Biochemical Journal, 330, 997–1001.

    PubMed  CAS  Google Scholar 

  38. Pisoni, R. L., & Thoene, J. G. (1991). The transport systems of mammalian lysosomes. Biochimica et Biophysica Acta, 1071, 351–373.

    PubMed  CAS  Google Scholar 

  39. Mani, R. S., Hammond, J. R., Marjan, J. M., Graham, K. A., Young, J. D., Baldwin, S. A., et al. (1998). Demonstration of equilibrative nucleoside transporters (hENT1 and hENT2) in nuclear envelopes of cultured human choriocarcinoma (BeWo) cells by functional reconstitution in proteoliposomes. Journal of Biological Chemistry, 273, 30818–30825.

    PubMed  CAS  Google Scholar 

  40. Lai, Y., Tse, C. M., & Unadkat, J. D. (2004). Mitochondrial expression of the human equilibrative nucleoside transporter 1 (hENT1) results in enhanced mitochondrial toxicity of antiviral drugs. Journal of Biological Chemistry, 279, 4490–4497.

    PubMed  CAS  Google Scholar 

  41. Mackey, J. R., Galmarini, C. M., Graham, K. A., Joy, A. A., Delmer, A., Dabbagh, L., et al. (2005). Quantitative analysis of nucleoside transporter and metabolism gene expression in chronic lymphocytic leukemia (CLL): Identification of fludarabine-sensitive and -insensitive populations. Blood, 105, 767–774.

    PubMed  CAS  Google Scholar 

  42. Choi, D. S., Cascini, M. G., Mailliard, W., Young, H., Paredes, P., McMahon, T., et al. (2004). The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference. Nature Neuroscience, 7, 855–861.

    PubMed  CAS  Google Scholar 

  43. Lang, T. T., Young, J. D., & Cass, C. E. (2004). Interactions of nucleoside analogs, caffeine, and nicotine with human concentrative nucleoside transporters 1 and 2 stably produced in a transport-defective human cell line. Molecular Pharmacology, 65, 925–933.

    PubMed  CAS  Google Scholar 

  44. Yao, S. Y., Ng, A. M., Loewen, S. K., Cass, C. E., Baldwin, S. A., & Young, J. D. (2002). An ancient prevertebrate Na+-nucleoside cotransporter (hfCNT) from the Pacific hagfish (Eptatretus stouti). American Journal of Physiology Cell Physiology, 283, C155–C168.

    PubMed  CAS  Google Scholar 

  45. Ritzel, M. W., Ng, A. M., Yao, S. Y., Graham, K., Loewen, S. K., Smith, K. M., et al. (2001). Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: Identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). Molecular Membrane Biology, 18, 65–72.

    PubMed  CAS  Google Scholar 

  46. Zhang, J., Visser, F., Vickers, M. F., Lang, T., Robins, M. J., Nielsen, L. P., et al. (2003). Uridine binding motifs of human concentrative nucleoside transporters 1 and 3 produced in Saccharomyces cerevisiae. Molecular Pharmacology, 64, 1512–1520.

    PubMed  CAS  Google Scholar 

  47. Zhang, J., Smith, K. M., Tackaberry, T., Visser, F., Robins, M. J., Nielsen, L. P., et al. (2005). Uridine binding and transportability determinants of human concentrative nucleoside transporters. Molecular Pharmacology, 68, 830–839.

    PubMed  CAS  Google Scholar 

  48. Visser, F., Zhang, J., Raborn, R. T., Baldwin, S. A., Young, J. D., & Cass, C. E. (2005). Residue 33 of human equilibrative nucleoside transporter 2 is a functionally important component of both the dipyridamole and nucleoside binding sites. Molecular Pharmacology, 67, 1291–1298.

    PubMed  CAS  Google Scholar 

  49. Ward, J. L., Sherali, A., Mo, Z. P., & Tse, C. M. (2000). Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine [In Process Citation]. Journal of Biological Chemistry, 275, 8375–8381.

    PubMed  CAS  Google Scholar 

  50. Mackey, J. R., Mani, R. S., Selner, M., Mowles, D., Young, J. D., Belt, J. A., et al. (1998). Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Research, 58, 4349–4357.

    PubMed  CAS  Google Scholar 

  51. Galmarini, C. M., Thomas, X., Calvo, F., Rousselot, P., Rabilloud, M., El Jaffari, A., et al. (2002). In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. British Journal of Haematology, 117, 860–868.

    PubMed  CAS  Google Scholar 

  52. Clarke, M. L., Damaraju, V. L., Zhang, J., Mowles, D., Tackaberry, T., Lang, T., et al. (2006). Uptake of 4′-thio-β-d-arabinofuranosylcytosine and β-d-arabinosylcytosine by human nucleoside transporters. Molecular Pharmacology, 70, 301–310.

    Google Scholar 

  53. Gati, W. P., Paterson, A. R., Belch, A. R., Chlumecky, V., Larratt, L. M., Mant, M. J., et al. (1998). Es nucleoside transporter content of acute leukemia cells: Role in cell sensitivity to cytarabine (araC). Leukemia and Lymphoma, 32, 45–54.

    PubMed  CAS  Google Scholar 

  54. Yao, S. Y., Ng, A. M., Sundaram, M., Cass, C. E., Baldwin, S. A., & Young, J. D. (2001). Transport of antiviral 3′-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Molecular Membrane Biology, 18, 161–167.

    PubMed  CAS  Google Scholar 

  55. Mackey, J. R., Yao, S. Y., Smith, K. M., Karpinski, E., Baldwin, S. A., Cass, C. E., et al. (1999). Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. Journal of the National Cancer Institute, 91, 1876–1881.

    PubMed  CAS  Google Scholar 

  56. Lostao, M. P., Mata, J. F., Larrayoz, I. M., Inzillo, S. M., Casado, F. J., & Pastor-Anglada, M. (2000). Electrogenic uptake of nucleosides and nucleoside-derived drugs by the human nucleoside transporter 1 (hCNT1) expressed in Xenopus laevis oocytes. FEBS Letters, 481, 137–140.

    PubMed  CAS  Google Scholar 

  57. Graham, K. A., Leithoff, J., Coe, I. R., Mowles, D., Mackey, J. R., Young, J. D., et al. (2000). Differential transport of cytosine-containing nucleosides by recombinant human concentrative nucleoside transporter protein hCNT1. Nucleosides Nucleotides Nucleic Acids, 19, 415–434.

    PubMed  CAS  Google Scholar 

  58. Mata, J. F., Garcia-Manteiga, J. M., Lostao, M. P., Fernandez-Veledo, S., Guillen-Gomez, E., Larrayoz, I. M., et al. (2001). Role of the human concentrative nucleoside transporter (hCNT1) in the cytotoxic action of 5[Prime]-deoxy-5-fluorouridine, an active intermediate metabolite of capecitabine, a novel oral anticancer drug. Molecular Pharmacology, 59, 1542–1548.

    PubMed  CAS  Google Scholar 

  59. Li, J. Y., Boado, R. J., & Pardridge, W. M. (2001). Differential kinetics of transport of 2′,3′-dideoxyinosine and adenosine via concentrative Na+ nucleoside transporter CNT2 cloned from rat blood-brain barrier. Journal of Pharmacology and Experimental Therapeutics, 299, 735–740.

    PubMed  CAS  Google Scholar 

  60. Gerstin, K. M., Dresser, M. J., & Giacomini, K. M. (2002). Specificity of human and rat orthologs of the concentrative nucleoside transporter, SPNT. American Journal of Physiology. Renal Physiology, 283, F344–F349.

    PubMed  CAS  Google Scholar 

  61. Sundaram, M., Yao, S. Y. M., Ingram, J. C., Berry, Z. A., Abidi, F., Cass, C. E., et al. (2001). Topology of a human nucleoside transporter implicated in cellular uptake of adenosine and anti-cancer drugs. Journal of Biological Chemistry, 276, 45270–45275.

    PubMed  CAS  Google Scholar 

  62. Ward, J. L., Leung, G. P., Toan, S. V., & Tse, C. M. (2003). Functional analysis of site-directed glycosylation mutants of the human equilibrative nucleoside transporter-2. Archives of Biochemistry and Biophysics, 411, 19–26.

    PubMed  CAS  Google Scholar 

  63. Vickers, M. F., Mani, R. S., Sundaram, M., Hogue, D. L., Young, J. D., Baldwin, S. A., et al. (1999). Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENT1/N48Q). Biochemical Journal, 339, 21–32.

    PubMed  CAS  Google Scholar 

  64. Huang, Q. Q., Yao, S. Y., Ritzel, M. W., Paterson, A. R., Cass, C. E., & Young, J. D. (1994). Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. Journal of Biological Chemistry, 269, 17757–17760.

    PubMed  CAS  Google Scholar 

  65. Craig, J. E., Zhang, Y., & Gallagher, M. P. (1994). Cloning of the nupC gene of Escherichia coli encoding a nucleoside transport system, and identification of an adjacent insertion element, IS 186. Molecular Microbiology, 11, 1159–1168.

    PubMed  CAS  Google Scholar 

  66. Toan, S. V., To, K. K., Leung, G. P., de Souza, M. O., Ward, J. L., & Tse, C. M. (2003). Genomic organization and functional characterization of the human concentrative nucleoside transporter-3 isoform (hCNT3) expressed in mammalian cells. Pflugers Archiv, 447, 195–204.

    PubMed  CAS  Google Scholar 

  67. Mangravite, L. M., & Giacomini, K. M. (2003) Sorting of rat SPNT in renal epithelium is independent of N-glycosylation. Pharmaceutical Research, 20, 319–323.

    PubMed  CAS  Google Scholar 

  68. Huang, Y., Lemieux, M. J., Song, J., Auer, M., & Wang, D. N. (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science, 301, 616-620.

    PubMed  CAS  Google Scholar 

  69. Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., & Iwata, S. (2003). Structure and mechanism of the lactose permease of Escherichia coli. Science, 301, 610–615.

    PubMed  CAS  Google Scholar 

  70. Yernool, D., Boudker, O., Jin, Y., & Gouaux, E. (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature, 431, 811–818.

    PubMed  CAS  Google Scholar 

  71. Widdas, W. F. (1952). Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. Journal of Physiology, 118, 23–39.

    PubMed  CAS  Google Scholar 

  72. DeFelice, L. J. (2004). Transporter structure and mechanism. Trends in Neurosciences, 27, 352–359.

    PubMed  CAS  Google Scholar 

  73. Locher, K. P., Bass, R. B., & Rees, D. C. (2003). Structural biology. Breaching the barrier. Science, 301, 603–604.

    PubMed  CAS  Google Scholar 

  74. Agbanyo, F. R., Cass, C. E., & Paterson, A. R. (1988). External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine. Molecular Pharmacology, 33, 332–337.

    PubMed  CAS  Google Scholar 

  75. Damaraju, S., Zhang, J., Visser, F., Tackaberry, T., Dufour, J., Smith, K. M., et al. (2005). Identification and functional characterization of variants in human concentrative nucleoside transporter 3, hCNT3 (SLC28A3), arising from single nucleotide polymorphisms in coding regions of the hCNT3 gene. Pharmacogenet Genomics, 15, 173–182.

    PubMed  CAS  Google Scholar 

  76. Mohlmann, T., Mezher, Z., Schwerdtfeger, G., & Neuhaus, H. E. (2001). Characterisation of a concentrative type of adenosine transporter from Arabidopsis thaliana (ENT1,At). FEBS Letters, 509, 370–374.

    PubMed  CAS  Google Scholar 

  77. Xiao, G., Wang, J., Tangen, T., & Giacomini, K. M. (2001). A novel proton-dependent nucleoside transporter, CeCNT3, from Caenorhabditis elegans. Molecular Pharmacology, 59, 339–348.

    PubMed  CAS  Google Scholar 

  78. Wormit, A., Traub, M., Florchinger, M., Neuhaus, H. E., & Mohlmann, T. (2004). Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. Biochemical Journal, 383, 19–26.

    PubMed  CAS  Google Scholar 

  79. Landfear, S. M., Ullman, B., Carter, N. S., & Sanchez, M. A. (2004). Nucleoside and nucleobase transporters in parasitic protozoa. Eukaryot Cell, 3, 245–254.

    PubMed  CAS  Google Scholar 

  80. Li, G., Liu, K., Baldwin, S. A., & Wang, D. (2003). Equilibrative nucleoside transporters of Arabidopsis thaliana. cDNA cloning, expression pattern, and analysis of transport activities. Journal of Biological Chemistry, 278, 35732–35742.

    PubMed  CAS  Google Scholar 

  81. Smith, K. M., Ng, A. M., Yao, S. Y., Labedz, K. A., Knaus, E. E., Wiebe, L. I., et al. (2004). Electrophysiological characterization of a recombinant human Na+-coupled nucleoside transporter (hCNT1) produced in Xenopus oocytes. Journal of Physiology, 558, 807–823.

    PubMed  CAS  Google Scholar 

  82. Jauch, P., Petersen, O. H., & Lauger, P. (1986). Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells. I. Tight-seal whole-cell recordings. Journal of Membrane Biology, 94, 99–115.

    PubMed  CAS  Google Scholar 

  83. Mackenzie, B., Loo, D. D., Panayotova-Heiermann, M., & Wright, E. M. (1996). Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. Journal of Biological Chemistry, 271, 32678–32683.

    PubMed  CAS  Google Scholar 

  84. Grewer, C., & Rauen, T. (2005). Electrogenic glutamate transporters in the CNS: Molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. Journal of Membrane Biology, 203, 1–20.

    PubMed  CAS  Google Scholar 

  85. Sundaram, M., Yao, S. Y. M., Ng, A. M. L., Griffiths, M., Cass, C. E., Baldwin, S. A., et al. (1998). Chimeric constructs between human and rat equilibrative nucleoside transporters (hENT1 and rENT1) reveal hENT1 structural domains interacting with coronary vasoactive drugs. Journal of Biological Chemistry, 273, 21519–21525.

    PubMed  CAS  Google Scholar 

  86. Yao, S. Y., Ng, A. M., Muzyka, W. R., Griffiths, M., Cass, C. E., Baldwin, S. A., et al. (1997). Molecular cloning and functional characterization of nitrobenzylthioinosine (NBMPR)-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENT1 and rENT2) from rat tissues. Journal of Biological Chemistry, 272, 28423–28430.

    PubMed  CAS  Google Scholar 

  87. Sundaram, M., Yao, S. Y., Ng, A. M., Cass, C. E., Baldwin, S. A., & Young, J. D. (2001). Equilibrative nucleoside transporters: Mapping regions of interaction for the substrate analogue nitrobenzylthioinosine (NBMPR) using rat chimeric proteins. Biochemistry, 40, 8146–8151.

    PubMed  CAS  Google Scholar 

  88. Yao, S. M., Sundaram, M., Chomey, E. G., Cass, C. E., Baldwin, S. A., & Young, J. D. (2001). Identification of Cys140 in helix 4 as an exofacial cysteine residue within the substrate-translocation channel of rat equilibrative nitrobenzylthioinosine (NBMPR)-insensitive nucleoside transporter rENT2. Biochemical Journal, 353, 387–393.

    PubMed  CAS  Google Scholar 

  89. SenGupta, D. J., Lum, P. Y., Lai, Y., Shubochkina, E., Bakken, A. H., Schneider, G., et al. (2002). A single glycine mutation in the equilibrative nucleoside transporter gene, hENT1, alters nucleoside transport activity and sensitivity to nitrobenzylthioinosine. Biochemistry, 41, 1512–1519.

    PubMed  CAS  Google Scholar 

  90. Appleford, P. J., Griffiths, M., Yao, S. Y., Ng, A. M., Chomey, E. G., Isaac, R. E., et al. (2004). Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development of Caenorhabditis elegans. Molecular Membrane Biology, 21, 247–259.

    PubMed  CAS  Google Scholar 

  91. Lemmon, M. A., Flanagan, J. M., Hunt, J. F., Adair, B. D., Bormann, B. J., Dempsey, C. E., et al. (1992). Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. Journal of Biological Chemistry, 267, 7683–7689.

    PubMed  CAS  Google Scholar 

  92. Endres, C. J., & Unadkat, J. D. (2005). Residues Met89 and Ser160 in the human equilibrative nucleoside transporter 1 affect its affinity for adenosine, guanosine, S6-(4-Nitrobenzyl)-mercaptopurine riboside, and dipyridamole. Molecular Pharmacology, 67, 837–844.

    PubMed  CAS  Google Scholar 

  93. Vasudevan, G., Ullman, B., & Landfear, S. M. (2001). Point mutations in a nucleoside transporter gene from Leishmania donovani confer drug resistance and alter substrate selectivity. Proceedings of the National Academy of Sciences of the United States of America, 98, 6092–6097.

    PubMed  CAS  Google Scholar 

  94. Valdes, R., Vasudevan, G., Conklin, D., & Landfear, S. M. (2004). Transmembrane domain 5 of the LdNT1.1 nucleoside transporter is an amphipathic helix that forms part of the nucleoside translocation pathway. Biochemistry, 43, 6793–6802.

    PubMed  CAS  Google Scholar 

  95. Arastu-Kapur, S., Ford, E., Ullman, B., & Carter, N. S. (2003). Functional analysis of an inosine-guanosine transporter from Leishmania donovani. The role of conserved residues, aspartate 389 and arginine 393. Journal of Biological Chemistry, 278, 33327–33333.

    PubMed  CAS  Google Scholar 

  96. Visser, F. (2005). Identification and characterization of molecular determinants of inhibitor interactions with equilibrative nucleoside transporters. Oncology, pp. 176. Edmonton: University of Alberta.

  97. Lai, Y., Lee, E. W., Ton, C. C., Vijay, S., Zhang, H., & Unadkat, J. D. (2005). Conserved residues F316 and G476 in the concentrative nucleoside transporter 1 (hCNT1) affect guanosine sensitivity and membrane expression, respectively. American Journal of Physiology. Cell Physiology, 288, C39–C45.

    PubMed  CAS  Google Scholar 

  98. Flanagan, S. A., & Meckling-Gill, K. A. (1997). Characterization of a novel Na+-dependent, guanosine-specific, nitrobenzylthioinosine-sensitive transporter in acute promyelocytic leukemia cells. Journal of Biological Chemistry, 272, 18026–18032.

    PubMed  CAS  Google Scholar 

  99. Wang, J., & Giacomini, K. M. (1997). Molecular determinants of substrate selectivity in Na+-dependent nucleoside transporters. Journal of Biological Chemistry, 272, 28845–28848.

    PubMed  CAS  Google Scholar 

  100. Loewen, S. K., Ng, A. M., Yao, S. Y., Cass, C. E., Baldwin, S. A., & Young, J. D. (1999). Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na(+) nucleoside cotransporters hCNT1 and hCNT2. Journal of Biological Chemistry, 274, 24475–24484.

    PubMed  CAS  Google Scholar 

  101. Zhang, J., Tackaberry, T., Ritzel, M. W., Raborn, T., Barron, G., Baldwin, S. A., et al. (2006). Cysteine-accessibility analysis of transmembrane domains 11–13 of human concentrative nucleoside transporter 3. Biochemical Journal, 394, 389–398.

    PubMed  CAS  Google Scholar 

  102. Lang, T. T., Selner, M., Young, J. D., & Cass, C. E. (2001). Acquisition of human concentrative nucleoside transporter 2 (hcnt2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells. Molecular Pharmacology, 60, 1143–1152.

    PubMed  CAS  Google Scholar 

  103. Chang, C., Swaan, P. W., Ngo, L. Y., Lum, P. Y., Patil, S. D., & Unadkat, J. D. (2004). Molecular requirements of the human nucleoside transporters hCNT1, hCNT2, and hENT1. Molecular Pharmacology, 65, 558–570.

    PubMed  CAS  Google Scholar 

  104. Patil, S. D., Ngo, L. Y., & Unadkat, J. D. (2000). Structure-inhibitory profiles of nucleosides for the human intestinal N1 and N2 Na+-nucleoside transporters. Cancer Chemotheraphy and Pharmacology, 46, 394–402.

    CAS  Google Scholar 

  105. Vickers, M. F., Zhang, J., Visser, F., Tackaberry, T., Robins, M. J., Nielsen, L. P., et al. (2004). Uridine recognition motifs of human equilibrative nucleoside transporters 1 and 2 produced in Saccharomyces cerevisiae. Nucleosides Nucleotides Nucleic Acids, 23, 361–373.

    PubMed  CAS  Google Scholar 

  106. Damaraju, V. L., Visser, F., Zhang, J., Mowles, D., Ng, A. M., Young, J. D., et al. (2005). Role of human nucleoside transporters in the cellular uptake of two inhibitors of IMP dehydrogenase, tiazofurin and benzamide riboside. Molecular Pharmacology, 67, 273–279.

    PubMed  CAS  Google Scholar 

  107. Guida, L., Bruzzone, S., Sturla, L., Franco, L., Zocchi, E., & De Flora, A. (2002). Equilibrative and Concentrative Nucleoside Transporters Mediate Influx of Extracellular Cyclic ADP-Ribose into 3T3 Murine Fibroblasts. Journal of Biological Chemistry, 277, 47097–47105.

    PubMed  CAS  Google Scholar 

  108. Huang, M., Wang, Y., Collins, M., Gu, J. J., Mitchell, B. S., & Graves, L. M. (2002). Inhibition of nucleoside transport by p38 MAPK inhibitors. Journal of Biological Chemistry, 277, 28364–28367.

    PubMed  CAS  Google Scholar 

  109. Huang, M., Wang, Y., Cogut, S. B., Mitchell, B. S., & Graves, L. M. (2003). Inhibition of nucleoside transport by protein kinase inhibitors. Journal of Pharmacology and Experimental Therapeutics, 304, 753–760.

    PubMed  CAS  Google Scholar 

  110. Leabman, M. K., Huang, C. C., DeYoung, J., Carlson, E. J., Taylor, T. R., de la Cruz, M., et al. (2003). Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proceedings of the National Academy of Sciences of the United States of America, 100, 5896–5901.

    PubMed  CAS  Google Scholar 

  111. Osato, D. H., Huang, C. C., Kawamoto, M., Johns, S. J., Stryke, D., Wang, J., et al. (2003). Functional characterization in yeast of genetic variants in the human equilibrative nucleoside transporter, ENT1. Pharmacogenetics, 13, 297–301.

    PubMed  CAS  Google Scholar 

  112. Owen, R. P., Lagpacan, L. L., Taylor, T. R., De La Cruz, M., Huang, C. C., Kawamoto, M., et al. (2006). Functional characterization and haplotype analysis of polymorphisms in the human equilibrative nucleoside transporter, ENT2. Drug Metabolism and Disposition, 34, 12–15.

    PubMed  CAS  Google Scholar 

  113. Badagnani, I., Chan, W., Castro, R. A., Brett, C. M., Huang, C. C., Stryke, D., et al. (2005). Functional analysis of genetic variants in the human concentrative nucleoside transporter 3 (CNT3; SLC28A3). Pharmacogenomics Journal, 5, 157–165.

    PubMed  CAS  Google Scholar 

  114. Gray, J. H., Mangravite, L. M., Owen, R. P., Urban, T. J., Chan, W., Carlson, E. J., et al. (2004). Functional and genetic diversity in the concentrative nucleoside transporter, CNT1, in human populations. Molecular Pharmacology, 65, 512–519.

    PubMed  CAS  Google Scholar 

  115. Owen, R. P., Gray, J. H., Taylor, T. R., Carlson, E. J., Huang, C. C., Kawamoto, M., et al. (2005). Genetic analysis and functional characterization of polymorphisms in the human concentrative nucleoside transporter, CNT2. Pharmacogenet Genomics, 15, 83–90.

    PubMed  CAS  Google Scholar 

  116. Lai, Y., Bakken, A. H., & Unadkat, J. D. (2002). Simultaneous expression of hCNT1-CFP and hENT1-YFP in Madin-Darby canine kidney cells. Localization and vectorial transport studies. Journal of Biological Chemistry, 277, 37711–37717.

    PubMed  CAS  Google Scholar 

  117. Mangravite, L. M., Lipshutz, J. H., Mostov, K. E., Giacomini, K. M. (2001). Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. American Journal of Physiology. Renal Physiology, 280, F879–F885.

    PubMed  CAS  Google Scholar 

  118. Mangravite, L. M., Xiao, G., & Giacomini, K. M. (2003). Localization of human equilibrative nucleoside transporters, hENT1 and hENT2, in renal epithelial cells. American Journal of Physiology. Renal Physiology, 284, F902–F910.

    PubMed  CAS  Google Scholar 

  119. Galmarini, C. M., Mackey, J. R., & Dumontet, C. (2001). Nucleoside analogues: Mechanisms of drug resistance and reversal strategies. Leukemia, 15, 875–890.

    PubMed  CAS  Google Scholar 

  120. Gourdeau, H., Clarke, M. L., Ouellet, F., Mowles, D., Selner, M., Richard, A., et al. (2001). Mechanisms of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines. Cancer Research, 61, 7217–7224.

    PubMed  CAS  Google Scholar 

  121. Stam, R. W., den Boer, M. L., Meijerink, J. P., Ebus, M. E., Peters, G. J., Noordhuis, P., et al. (2003). Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood, 101, 1270–1276.

    PubMed  CAS  Google Scholar 

  122. Huang, Y., Anderle, P., Bussey, K. J., Barbacioru, C., Shankavaram, U., Dai, Z., et al. (2004). Membrane transporters and channels: Role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Research, 64, 4294–4301.

    PubMed  CAS  Google Scholar 

  123. Spratlin, J., Sangha, R., Glubrecht, D., Dabbagh, L., Young, J. D., Dumontet, C., et al. (2004). The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clinical Cancer Research, 10, 6956–6961.

    PubMed  CAS  Google Scholar 

  124. Galmarini, C. M., Clarke, M. L., Jordheim, L., Santos, C. L., Cros, E., Mackey, J. R., et al. (2004). Resistance to gemcitabine in a human follicular lymphoma cell line is due to partial deletion of the deoxycytidine kinase gene. BMC Pharmacology, 4, 8.

    PubMed  Google Scholar 

  125. Jordheim, L. P., Cros, E., Gouy, M. H., Galmarini, C. M., Peyrottes, S., Mackey, J., et al. (2004). Characterization of a gemcitabine-resistant murine leukemic cell line: reversion of in vitro resistance by a mononucleotide prodrug. Clinical Cancer Research, 10, 5614–5621.

    PubMed  CAS  Google Scholar 

  126. Chow, L., Lai, R., Dabbagh, L., Belch, A., Young, J. D., Cass, C. E., et al. (2005). Analysis of human equilibrative nucleoside transporter 1 (hENT1) protein in non-Hodgkin’s lymphoma by immunohistochemistry. Modern Pathology, 18, 558–564.

    PubMed  CAS  Google Scholar 

  127. Robak, T. (2005). Therapy of chronic lymphocytic leukaemia with purine nucleoside analogues: facts and controversies. Drugs Aging, 22, 983–1012.

    PubMed  CAS  Google Scholar 

  128. Grever, M. R., Kopecky, K. J., Coltman, C. A., Files, J. C., Greenberg, B. R., Hutton, J. J., et al. (1988). Fludarabine monophosphate: A potentially useful agent in chronic lymphocytic leukemia. Nouvelle Revue Francaise d’hematologie, 30, 457–459.

    PubMed  CAS  Google Scholar 

  129. Ross, S. R., McTavish, D., & Faulds, D. (1993). Fludarabine. A review of its pharmacological properties and therapeutic potential in malignancy. Drugs, 45, 737–759.

    Article  PubMed  CAS  Google Scholar 

  130. Beutler, E. (1992). Cladribine (2-chlorodeoxyadenosine). Lancet, 340, 952–956.

    PubMed  CAS  Google Scholar 

  131. Robak, T., Korycka, A., Kasznicki, M., Wrzesien-Kus, A., & Smolewski, P. (2005). Purine nucleoside analogues for the treatment of hematological malignancies: pharmacology and clinical applications. Current Cancer Drug Targets, 5, 421–444.

    PubMed  CAS  Google Scholar 

  132. Plunkett, W., & Saunders, P. P. (1991). Metabolism and action of purine nucleoside analogs. Pharmacology and Therapeutics, 49, 239–268.

    PubMed  CAS  Google Scholar 

  133. Wang, L., Karlsson, A., Arner, E. S., & Eriksson, S. (1993). Substrate specificity of mitochondrial 2′-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine. Journal of Biological Chemistry, 268, 22847–22852.

    PubMed  CAS  Google Scholar 

  134. Pettitt, A. R., Sherrington, P. D., & Cawley, J. C. (2000). Role of poly(ADP-ribosyl)ation in the killing of chronic lymphocytic leukemia cells by purine analogues. Cancer Research, 60, 4187–4193.

    PubMed  CAS  Google Scholar 

  135. Huang, P., & Plunkett, W. (1991). Action of 9-beta-d-arabinofuranosyl-2-fluoroadenine on RNA metabolism. Molecular Pharmacology, 39, 449–455.

    PubMed  CAS  Google Scholar 

  136. Huang, P., Sandoval, A., Van Den Neste, E., Keating, M. J., & Plunkett, W. (2000). Inhibition of RNA transcription: A biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia, 14, 1405–1413.

    PubMed  CAS  Google Scholar 

  137. Genini, D., Adachi, S., Chao, Q., Rose, D. W., Carrera, C. J., Cottam, H. B., et al. (2000). Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood, 96, 3537–3543.

    PubMed  CAS  Google Scholar 

  138. Montgomery, J. A., Shortnacy-Fowler, A. T., Clayton, S. D., Riordan, J. M., & Secrist, J. A., (1992). 3rd synthesis and biologic activity of 2′-fluoro-2-halo derivatives of 9-beta-d-arabinofuranosyladenine. Journal of Medicinal Chemistry, 35, 397–401.

    PubMed  CAS  Google Scholar 

  139. Xie, K. C., & Plunkett, W. (1996). Deoxynucleotide pool depletion and sustained inhibition of ribonucleotide reductase and DNA synthesis after treatment of human lymphoblastoid cells with 2-chloro-9-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl) adenine. Cancer Research, 56, 3030–3037.

    PubMed  CAS  Google Scholar 

  140. Waud, W. R., Schmid, S. M., Montgomery, J. A., & Secrist, J. A. (2000). 3rd preclinical antitumor activity of 2-chloro-9-(2-deoxy-2-fluoro-beta-d- arabinofuranosyl)adenine (Cl-F-ara-A). Nucleosides Nucleotides Nucleic Acids, 19, 447-460.

    PubMed  CAS  Google Scholar 

  141. Kantarjian, H. M., Gandhi, V., Kozuch, P., Faderl, S., Giles, F., Cortes, J., et al. (2003). Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. Journal of Clinical Oncology, 21, 1167–1173.

    PubMed  CAS  Google Scholar 

  142. Kantarjian, H., Gandhi, V., Cortes, J., Verstovsek, S., Du, M., Garcia-Manero, G., et al. (2003). Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood, 102, 2379–2386.

    PubMed  CAS  Google Scholar 

  143. Jeha, S., Gandhi, V., Chan, K. W., McDonald, L., Ramirez, I., Madden, R., et al. (2004). Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood, 103, 784–789.

    PubMed  CAS  Google Scholar 

  144. Faderl, S., Gandhi, V., Keating, M. J., Jeha, S., Plunkett, W., & Kantarjian, H. M. (2005). The role of clofarabine in hematologic and solid malignancies—Development of a next-generation nucleoside analog. Cancer, 103, 1985–1995.

    PubMed  CAS  Google Scholar 

  145. Molina-Arcas, M., Marce, S., Villamor, N., Huber-Ruano, I., Casado, F. J., Bellosillo, B., et al. (2005). Equilibrative nucleoside transporter-2 (hENT2) protein expression correlates with ex vivo sensitivity to fludarabine in chronic lymphocytic leukemia (CLL) cells. Leukemia, 19, 64–68.

    PubMed  CAS  Google Scholar 

  146. King, K. M., Damaraju, V. L., Vickers, M. F., Yao, S. Y., Lang, T., Tackaberry, T. E., et al. (2006). A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Molecular Pharmacology, 69, 346–353.

    PubMed  CAS  Google Scholar 

  147. King, K. M., & Cass, C. E. (1994). Membrane transport of 2-chloro-2′-deoxyadenosine and 2-chloro-2′-arabinofluoro-2′-deoxyadenosine is required for cytotoxicity. Proceedings of the American Association for Cancer Research, 35, A3436.

    Google Scholar 

  148. Schaner, M. E., Wang, J., Zevin, S., Gerstin, K. M., & Giacomini, K. M. (1997). Transient expression of a purine-selective nucleoside transporter (SPNTint) in a human cell line (HeLa). Pharmaceutical Research, 14, 1316–1321.

    PubMed  CAS  Google Scholar 

  149. Avery, T. L., Rehg, J. E., Lumm, W. C., Harwood, F. C., Santana, V. M., & Blakley, R. L. (1989). Biochemical pharmacology of 2-chlorodeoxyadenosine in malignant human hematopoietic cell lines and therapeutic effects of 2-bromodeoxyadenosine in drug combinations in mice. Cancer Research, 49, 4972-4978.

    PubMed  CAS  Google Scholar 

  150. Ellison, R. R., Holland, J. F., Weil, M., Jacquillat, C., Boiron, M., Bernard, J., et al. (1968). Arabinosyl cytosine: A useful agent in the treatment of acute leukemia in adults. Blood, 32, 507–523.

    PubMed  CAS  Google Scholar 

  151. Grant, S. (1998). Ara-C: Cellular and molecular pharmacology. Advances in Cancer Research, 72, 197–233.

    PubMed  CAS  Google Scholar 

  152. Plunkett, W., Liliemark, J. O., Estey, E., & Keating, M. J. (1987). Saturation of ara-CTP accumulation during high-dose ara-C therapy: pharmacologic rationale for intermediate-dose ara-C. Seminars in Oncology, 14, 159–166.

    PubMed  CAS  Google Scholar 

  153. Laliberte, J., & Momparler, R. L. (1994). Human cytidine deaminase: Purification of enzyme, cloning, and expression of its complementary DNA. Cancer Research, 54, 5401–5407.

    PubMed  CAS  Google Scholar 

  154. Amici, A., Emanuelli, M., Magni, G., Raffaelli, N., & Ruggieri, S. (1997). Pyrimidine nucleotidases from human erythrocyte possess phosphotransferase activities specific for pyrimidine nucleotides. FEBS Letters, 419, 263–267.

    PubMed  CAS  Google Scholar 

  155. Mancini, W. R., & Cheng, Y. C. (1983). Human deoxycytidylate deaminase. Substrate and regulator specificities and their chemotherapeutic implications. Molecular Pharmacology, 23, 159–164.

    PubMed  CAS  Google Scholar 

  156. Ho, D. H., & Frei, E., 3rd (1971). Clinical pharmacology of 1-beta-d-arabinofuranosyl cytosine. Clinical Pharmacology and Therapeutics, 12, 944-954.

    PubMed  CAS  Google Scholar 

  157. Wiley, J. S., Jones, S. P., Sawyer, W. H., & Paterson, A. R. (1982). Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. Journal of Clinical Investigation, 69, 479–489.

    Article  PubMed  CAS  Google Scholar 

  158. Wiley, J. S., Woodruff, R. K., Jamieson, G. P., Firkin, F. C., & Sawyer, W. H. (1987). Cytosine arabinoside in the treatment of T-cell acute lymphoblastic leukemia. Australian and New Zealand Journal of Medicine, 17, 379–386.

    PubMed  CAS  Google Scholar 

  159. Hubeek, I., Stam, R. W., Peters, G. J., Broekhuizen, R., Meijerink, J. P., van Wering, E. R., et al. (2005). The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. British Journal of Cancer, 93, 1388–1394.

    PubMed  CAS  Google Scholar 

  160. Takagaki, K., Katsuma, S., Kaminishi, Y., Horio, T., Nakagawa, S., Tanaka, T., et al. (2004). Gene-expression profiling reveals down-regulation of equilibrative nucleoside transporter 1 (ENT1) in ara-C-resistant CCRF-CEM-derived cells. Journal of Biochemistry (Tokyo), 136, 733–740.

    CAS  Google Scholar 

  161. Wiley, J. S., Brocklebank, A. M., Snook, M. B., Jamieson, G. P., Sawyer, W. H., Craik, J. D., et al. (1991). A new fluorescent probe for the equilibrative inhibitor-sensitive nucleoside transporter. 5′-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5′- thioadenosine (SAENTA)-chi 2-fluorescein. Biochemical Journal, 273, 667–672.

    PubMed  CAS  Google Scholar 

  162. Wright, A. M., Paterson, A. R., Sowa, B., Akabutu, J. J., Grundy, P. E., & Gati, W. P. (2002). Cytotoxicity of 2-chlorodeoxyadenosine and arabinosylcytosine in leukaemic lymphoblasts from paediatric patients: significance of cellular nucleoside transporter content. British Journal of Haematology, 116, 528–537.

    PubMed  CAS  Google Scholar 

  163. Capizzi, R. L., Yang, J. L., Cheng, E., Bjornsson, T., Sahasrabudhe, D., Tan, R. S., et al. (1983). Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia. Journal of Clinical Oncology, 1, 763–771.

    PubMed  CAS  Google Scholar 

  164. Ravindranath, Y., Chang, M., Steuber, C. P., Becton, D., Dahl, G., Civin, C., et al. (2005). Pediatric Oncology Group (POG) studies of acute myeloid leukemia (AML): A review of four consecutive childhood AML trials conducted between 1981 and 2000. Leukemia, 19, 2101–2116.

    PubMed  CAS  Google Scholar 

  165. Bohm, A., Piribauer, M., Wimazal, F., Geissler, K., Gisslinger, H., Knobl, P., et al. (2005). High dose intermittent ARA-C (HiDAC) for consolidation of patients with de novo AML: A single center experience. Leukemia Research, 29, 609–615.

    PubMed  Google Scholar 

  166. Friberg, G., & Kindler, H. L. (2005). Chemotherapy for advanced pancreatic cancer: Past, present, and future. Current Oncology Reports, 7, 186–195.

    PubMed  CAS  Google Scholar 

  167. Patel, S. R., Gandhi, V., Jenkins, J., Papadopolous, N., Burgess, M. A., Plager, C., et al. (2001). Phase II clinical investigation of gemcitabine in advanced soft tissue sarcomas and window evaluation of dose rate on gemcitabine triphosphate accumulation. Journal of Clinical Oncology, 19, 3483–3489.

    PubMed  CAS  Google Scholar 

  168. Kose, M. F., Meydanli, M. M., & Tulunay, G. (2006). Gemcitabine plus carboplatin in platinum-sensitive recurrent ovarian carcinoma. Expert Review of Anticancer Therapy, 6, 437–443.

    PubMed  CAS  Google Scholar 

  169. Saha, A., & Rudd, R. (2006). Gemcitabine and carboplatin: Is this the best combination for non-small cell lung cancer? Expert Review of Anticancer Therapy, 6, 165–173.

    PubMed  CAS  Google Scholar 

  170. Poveda, A. (2005). Gemcitabine in patients with ovarian cancer. Cancer Treatment Reviews, 31(4), S29–S37.

    PubMed  CAS  Google Scholar 

  171. Yardley, D. A. (2005). Gemcitabine plus paclitaxel in breast cancer. Seminars in Oncology, 32, S14–S21.

    PubMed  CAS  Google Scholar 

  172. Plunkett, W., Huang, P., Xu, Y. Z., Heinemann, V., Grunewald, R., & Gandhi, V. (1995). Gemcitabine: Metabolism, mechanisms of action, and self-potentiation. Seminars in Oncology, 22, 3–10.

    PubMed  CAS  Google Scholar 

  173. Baker, C. H., Banzon, J., Bollinger, J. M., Stubbe, J., Samano, V., Robins, M. J., et al. (1991). 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: Potent mechanism-based inhibitors of ribonucleotide reductase. Journal of Medicinal Chemistry, 34, 1879–1884.

    PubMed  CAS  Google Scholar 

  174. Heinemann, V., Xu, Y. Z., Chubb, S., Sen, A., Hertel, L. W., Grindey, G. B., et al. (1992). Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: A mechanism of self-potentiation. Cancer Research, 52, 533–539.

    PubMed  CAS  Google Scholar 

  175. Heinemann, V., Schulz, L., Issels, R. D., & Plunkett, W. (1995). Gemcitabine: A modulator of intracellular nucleotide and deoxynucleotide metabolism. Seminars in Oncology, 22, 11–18.

    PubMed  CAS  Google Scholar 

  176. Plunkett, W., Huang, P., Searcy, C. E., & Gandhi, V. (1996). Gemcitabine: Preclinical pharmacology and mechanisms of action. Seminars in Oncology, 23, 3–15.

    PubMed  CAS  Google Scholar 

  177. Achiwa, H., Oguri, T., Sato, S., Maeda, H., Niimi, T., & Ueda, R. (2004). Determinants of sensitivity and resistance to gemcitabine: The roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Science, 95, 753–757.

    PubMed  CAS  Google Scholar 

  178. Burke, T., Lee, S., Ferguson, P. J., & Hammond, J. R. (1998). Interaction of 2′,2′-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells. Journal of Pharmacology and Experimental Therapeutics, 286, 1333–1340.

    PubMed  CAS  Google Scholar 

  179. Garcia-Manteiga, J., Molina-Arcas, M., Casado, F. J., Mazo, A., & Pastor-Anglada, M. (2003). Nucleoside transporter profiles in human pancreatic cancer cells: Role of hCNT1 in 2′,2′-difluorodeoxycytidine-induced cytotoxicity. Clinical Cancer Research, 9, 5000–5008.

    PubMed  CAS  Google Scholar 

  180. Giovannetti, E., Del Tacca, M., Mey, V., Funel, N., Nannizzi, S., Ricci, S., et al. (2006). Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Research, 66, 3928–3935.

    PubMed  CAS  Google Scholar 

  181. Alexander, R. L., Greene, B. T., Torti, S. V., & Kucera, G. L. (2005). A novel phospholipid gemcitabine conjugate is able to bypass three drug-resistance mechanisms. Cancer Chemotheraphy and Pharmacology, 56, 15–21.

    CAS  Google Scholar 

  182. Whistler, R. L., Doner, L. W., & Nayak, U. G. (1971). 4-thio-d-arabinofuranosylpyrimidine nucleosides. Journal of Organic Chemistry, 36, 108-110.

    PubMed  CAS  Google Scholar 

  183. Miura, S., Yoshimura, Y., Endo, M., Satoh, H., Machida, H., & Sasaki, T. (1999). Comparison of 1-(2-deoxy-2-fluoro-4-thio-beta-d-arabinofuranosyl)cytosine with gemcitabine in its antitumor activity. Cancer Letter, 144, 177–182.

    CAS  Google Scholar 

  184. Miura, S., Yoshimura, Y., Endo, M., Machida, H., Matsuda, A., Tanaka, M., et al. (1998). Antitumor activity of a novel orally effective nucleoside, 1-(2-deoxy-2-fluoro-4-thio-beta-d-arabinofuranosyl)cytosine. Cancer Letter, 129, 103–110.

    CAS  Google Scholar 

  185. Miller, D. S. (2001). Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule. Journal of Pharmacology and Experimental Therapeutics, 299, 567–574.

    PubMed  CAS  Google Scholar 

  186. Zajchowski, D. A., Biroc, S. L., Liu, H. L., Chesney, S. K., Hoffmann, J., Bauman, J., et al. (2005). Anti-tumor efficacy of the nucleoside analog 1-(2-deoxy-2-fluoro-4-thio-beta-d-arabinofuranosyl) cytosine (4′-thio-FAC) in human pancreatic and ovarian tumor xenograft models. International Journal of Cancer, 114, 1002–1009.

    CAS  Google Scholar 

  187. Parker, W. B., Shaddix, S. C., Rose, L. M., Waud, W. R., Shewach, D. S., Tiwari, K. N., et al. (2000). Metabolism of 4′-thio-beta-d-arabinofuranosylcytosine in CEM cells. Biochemical Pharmacology, 60, 1925–1932.

    PubMed  CAS  Google Scholar 

  188. Someya, H., Waud, W. R., & Parker, W. B. (2005). Long intracellular retention of 4′-thio-arabinofuranosylcytosine 5′-triphosphate as a critical factor for the anti-solid tumor activity of 4′-thio-arabinofuranosylcytosine. Cancer Chemother Pharmacol, 1–9.

  189. Richardson, F., Black, C., Richardson, K., Franks, A., Wells, E., Karimi, S., et al. (2005). Incorporation of OSI-7836 into DNA of Calu-6 and H460 xenograft tumors. Cancer Chemotheraphy and Pharmacology, 55, 213–221.

    CAS  Google Scholar 

  190. Richardson, K. A., Vega, T. P., Richardson, F. C., Moore, C. L., Rohloff, J. C., Tomkinson, B., et al. (2004). Polymerization of the triphosphates of AraC, 2′,2′-difluorodeoxycytidine (dFdC) and OSI-7836 (T-araC) by human DNA polymerase alpha and DNA primase. Biochemical Pharmacology, 68, 2337–2346.

    PubMed  CAS  Google Scholar 

  191. Grove, K. L., Guo, X., Liu, S. H., Gao, Z., Chu, C. K., & Cheng, Y. C. (1995). Anticancer activity of beta-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L configuration. Cancer Research, 55, 3008–3011.

    PubMed  CAS  Google Scholar 

  192. Gourdeau, H., Genne, P., Kadhim, S., Bibeau, L., Duchamp, O., Ouellet, F., et al. (2002). Antitumor activity of troxacitabine (Troxatyl) against anthracycline-resistant human xenografts. Cancer Chemotheraphy and Pharmacology, 50, 490–496.

    CAS  Google Scholar 

  193. Giles, F. J., Cortes, J. E., Baker, S. D., Thomas, D. A., O’Brien, S., Smith, T. L., et al. (2001). Troxacitabine, a novel dioxolane nucleoside analog, has activity in patients with advanced leukemia. Journal of Clinical Oncology, 19, 762–771.

    PubMed  CAS  Google Scholar 

  194. Giles, F. J., Garcia-Manero, G., Cortes, J. E., Baker, S. D., Miller, C. B., O’Brien, S. M., et al. (2002). Phase II study of troxacitabine, a novel dioxolane nucleoside analog, in patients with refractory leukemia. Journal of Clinical Oncology, 20, 656–664.

    PubMed  CAS  Google Scholar 

  195. Townsley, C. A., Chi, K., Ernst, D. S., Belanger, K., Tannock, I., Bjarnason, G. A., et al. (2003). Phase II study of troxacitabine (BCH-4556) in patients with advanced and/or metastatic renal cell carcinoma: A trial of the National Cancer Institute of Canada-Clinical Trials Group. Journal of Clinical Oncology, 21, 1524–1529.

    PubMed  CAS  Google Scholar 

  196. Lapointe, R., Letourneau, R., Steward, W., Hawkins, R. E., Batist, G., Vincent, M., et al. (2005). Phase II study of troxacitabine in chemotherapy-naive patients with advanced cancer of the pancreas: Gastrointestinal tumors. Annals of Oncology, 16, 289–293.

    PubMed  CAS  Google Scholar 

  197. Dnt, S. F., Arnold, A., Stewart, D. J., Gertler, S., Ayoub, J., Batist, G., et al. (2005). Phase II study of troxacitabine (BCH-4556) in patients with advanced non-small-cell lung cancer. Lung, 183, 265–272.

    PubMed  CAS  Google Scholar 

  198. Walko, C. M., & Lindley, C. (2005). Capecitabine: A review. Clinical Therapeutics, 27, 23–44.

    PubMed  CAS  Google Scholar 

  199. Ishikawa, T., Utoh, M., Sawada, N., Nishida, M., Fukase, Y., Sekiguchi, F., et al. (1998). Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochemical Pharmacology, 55, 1091–1097.

    PubMed  CAS  Google Scholar 

  200. Schmoll, H. J., Buchele, T., Grothey, A., & Dempke, W. (1999). Where do we stand with 5-fluorouracil? Seminars in Oncology, 26, 589–605.

    PubMed  CAS  Google Scholar 

  201. Gati, W. P., Paterson, A. R., Tyrrell, D. L., Cass, C. E., Moravek, J., & Robins, M. J. (1992). Nucleobase transporter-mediated permeation of 2′,3′-dideoxyguanosine in human erythrocytes and human T-lymphoblastoid CCRF-CEM cells. Journal of Biological Chemistry, 267, 22272–22276.

    PubMed  CAS  Google Scholar 

  202. Cass, C. E., King, K. M., Montano, J. T., & Janowska-Wieczorek, A. (1992). A comparison of the abilities of nitrobenzylthioinosine, dilazep, and dipyridamole to protect human hematopoietic cells from 7-deazaadenosine (tubercidin). Cancer Research, 52, 5879–5886.

    PubMed  CAS  Google Scholar 

  203. Gati, W. P., Larratt, L. M., & Turner, A. R. (2001). Cellular abundance of es nucleoside transporters and differential drug toxicity in myelodysplastic syndrome (MDS) bone marrow cell subpopulations. Proceedings of the Western Pharmacology Society, 44, 93–96.

    PubMed  CAS  Google Scholar 

  204. Zhang, J., Sun, X., Smith, K. M., Visser, F., Carpenter, P., Barron, G., et al. (2006). Studies of nucleoside transporters using novel autofluorescent nucleoside probes. Biochemistry, 45, 1087–1098.

    PubMed  CAS  Google Scholar 

  205. Schaner, M. E., Wang, J., Zhang, L., Su, S. F., Gerstin, K. M., & Giacomini, K. M. (1999). Functional characterization of a human purine-selective, Na+-dependent nucleoside transporter (hSPNT1) in a mammalian expression system. Journal of Pharmacology and Experimental Therapeutics, 289, 1487–1491.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol E. Cass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Visser, F., King, K.M. et al. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 26, 85–110 (2007). https://doi.org/10.1007/s10555-007-9044-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9044-4

Keywords

Navigation