Skip to main content

Advertisement

Log in

Structure function relationships in the lymphatic system and implications for cancer biology

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The lymphatic system, composed of lymphatic vessels, lymph, lymph nodes, and lymphocytes, is a distinctive vasculature (discontinuous basement membrane, open endothelial junctions, anchoring filaments, valves, and intrinsic contractility), different yet similar to the blood vasculature; an integral component of the plasma-tissue fluid-lymph circulation (the “blood-lymph loop”); and the center of the immunoregulatory network. Lymphatics are involved in diverse developmental, growth, repair, and pathologic processes both analogous to and distinct from those affecting the blood vasculature. Interference with the blood-lymph loop produces swelling [an imbalance between lymph formation (regulated by Starling’s law of transcapillary fluid exchange) and lymph absorption], scarring, nutritional and immunodysregulatory disorders, as well as disturbances in lymph(hem)angiogenesis (lymphedema-angiodysplasia syndromes). The lymphatic system is also the stage on which key events during cancer development and progression are played out, and historically, also forms the basis for current evaluation, prognostication, and/or both operative and non-operative treatment of most cancers. Recent advances in molecular lymphology (e.g., discovery of lymphatic growth factors, endothelial receptors, transcription factors, genes, and highly specific immunohistochemical markers) and growing interest in lymphangiogenesis, combined with fresh insights and refined tools in clinical lymphology, including non-invasive lymphatic imaging, are opening up a window for translation to the clinical arena. Therefore, in cancer biology, attention to the multifaceted structure-function relationships within this vast, relatively unexplored system is long overdue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asellius G: De lactibus sive lacteis venis. J.B. Bidellium, Milan 1627

  2. Triola VA: Nineteenth century foundations of cancer research. Advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res 25: 75–106, 1965

    Google Scholar 

  3. Starling EH: The fluids of the body. The Herter Lectures. Chicago, WT Keener, 1909, p. 81

    Google Scholar 

  4. Yoffey JM, Courtice, FC (eds): Lymphatics, lymph and the lymphomyeloid complex. Academic Press, London, 1970, p. 942

    Google Scholar 

  5. Starling EH: Physiologic factors involved in the causation of dropsy. Lancet 1: 1267, 1896

    Google Scholar 

  6. Sabin FR: On the origin and development of the lymphatic system from the veins and the development of the lymph hearts and the thoracic duct in the pig. Am J Anat 1: 367–389, 1902

    Google Scholar 

  7. Kampmeier OF (ed): Evolution and comparative morphology of the lymphatic system. Charles C. Thomas, Springfield, Illinois, 1969, p. 620

    Google Scholar 

  8. Witte CL, Witte MH, Dumont AE: Lymph imbalance in the genesis and perpetuation of the ascites syndrome in hepatic cirrhosis. Gastroenterology 78: 1059–1068, 1980

    PubMed  CAS  Google Scholar 

  9. Witte MH, Dumont AE, Clauss RH, Rader B, Levine N, Breed ES: Lymph circulation in congestive heart failure: Effect of external thoracic duct drainage. Circulation 39: 723–733, 1969

    PubMed  CAS  Google Scholar 

  10. McMaster PD: The lymphatics and lymph flow in the edematous skin of human beings with cardiac and renal disease. J Exp Med 65: 373–397, 1937

    Google Scholar 

  11. Kinmonth JB (ed): The lymphatics: Diseases, lymphography and surgery. Edward Arnold, London, 1972, p. 420

  12. Rusznyák I, Földi M, Szabo G: Lymphatics and Lymph Circulation. Pergamon Press, New York:Oxford, p 853 1960

    Google Scholar 

  13. Lymphology 1–38 1967–2005

  14. Progress in Lymphology I-XIX. Proceedings of the International Congresses of Lymphology, 1967–2004

  15. Witte MH, Witte CL, Way DL: Medical ignorance, AIDS-Kaposi sarcoma complex, and the lymphatic system. Western J Med 153: 17–23, 1990

    CAS  Google Scholar 

  16. Witte MH, Way DL, Witte CL, Bernas M: Lymphangiogenesis: Mechanisms, significance and clinical implications. In: Goldberg ID, Rosen EM (eds) Regulation of Angiogenesis, Birkhæuser Verlag Basel/Switzerland pp 65–112 1997

  17. Witte MH, Bernas M, Martin C Witte CL: Lymphangiogenesis and lymphangiodysplasias: From molecular to clinical lymphology. In Wilting J (guest ed) The Biology of Lymphangiogenesis, Microscopy Research and Techniques 55: 122–145, 2001

    CAS  Google Scholar 

  18. Földi M, Földi E, Kubik S (eds): Textbook of lymphology for physicians and lymphedema therapists. Urban & Fischer Verlag, München, Germany (English text revised by Biotext, LLC, San Francisco), 6th ed, 2003, p. 689

    Google Scholar 

  19. Witte CL, Witte MH: Lymph circulatory dynamics, lymphangiogenesis, and pathophysiology of the lymphvascular system. In Rutherford RB (ed) Vascular Surgery, 6th ed. W.B. Saunders Company, Philadelphia, Pennsylvania, Chapter 166, 2005, pp. 2379–2396

  20. Witte CL, Witte MH, Unger EC, Williams WH, Bernas MJ, McNeill GC, Stazzone A: Advances in imaging of lymph flow disorders. RadioGraphics 20: 1697–1719, 2000

    PubMed  CAS  Google Scholar 

  21. Witte MH, Bernas MJ, Northup KA, Witte CL: Molecular lymphology and genetics of lymphedema-angiodysplasia syndromes. In: Földi M, Földi E, Kubik S (eds), Textbook of Lymphology for Physicians and Lymphedema Therapists, Urban & Fischer Verlag, München, Germany (English text revised by Biotext, LLC, San Francisco), 6th ed, Chapter 16, 2003, pp. 471–493

    Google Scholar 

  22. Bowman C, Witte MH, Witte CL, Way D, Nagle R, Copeland J, Daschbach C: Cystic hygroma reconsidered: Hamartoma or neoplasm? Primary culture of an endothelial cell line from a massive cervicomediastinal cystic hygroma with bony lymphangiomatosis. Lymphology 17: 15–22, 1984

    PubMed  CAS  Google Scholar 

  23. Johnston MG, Walker MA: Lymphatic endothelial and smooth-muscle cells in tissue culture. In Vitro 20: 566, 1984

    PubMed  CAS  Google Scholar 

  24. Gnepp DR, Chandler W: Tissue culture of human and canine thoracic duct endothelium. In Vitro 21: 200, 1985

    CAS  Google Scholar 

  25. Witte MH, Witte CL: Lymphangiogenesis and lymphologic syndromes. Lymphology 19: 21–28, 1986

    PubMed  CAS  Google Scholar 

  26. Leak LV, Jones M: Lymphangiogenesis in vitro: Formation of lymphatic capillary-like channels from confluent monolayers of lymphatic endothelial cells. In Vitro Cell Dev Biol 30A: 512–518

  27. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K: A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO 15: 290–298, 1996

    CAS  Google Scholar 

  28. Galland F, Karamysheva A, Mattei MG, Rosnet O, Marchetto S, Birnbaum D: Chromosomal localization of FLT4, a novel receptor-type tyrosine kinase gene. Genomics 13: 475–478, 1992

    PubMed  CAS  Google Scholar 

  29. Wigle JT, Oliver G: Prox1 function is required for the development of the murine lymphatic system. Cell 98: 769–778, 1999

    PubMed  CAS  Google Scholar 

  30. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD: Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Developmental Cell 3: 411–423, 2002

    PubMed  CAS  Google Scholar 

  31. Breiteneder-Geleff, S, Soleiman A, Kowalski H, Horvat R, Amann G, Kreihuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D: Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. Am J Path 154: 385–394, 1999

    PubMed  CAS  Google Scholar 

  32. Banerji S, Ni J, Wang S-X, Clasper S, Su J, Tammi R, Jones M, Jackson DG: LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biology 144: 789–801, 1999

    CAS  Google Scholar 

  33. Witte MH, Witte CL, Way D, Bernas M: Control of lymphangiogenesis. In Jiménez Cossío JA, Farrajota A, Samaniego E, Witte MH, Witte CL (eds.) Progress in Lymphology-XVI. Proc. 16th Int'l. Congress of Lymphology, September 22–27, 1997, The International Society of Lymphology, Zürich, Switzerland and Tucson, AZ, USA. Lymphology 31(Suppl): 37–40, 1998

  34. Wilting J (ed): The biology of lymphangiogenesis. Microscopy Research and Techniques 55(2): 59–145, 2001

  35. Alitalo K, Carmelle P: Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219–226, 2002

    PubMed  CAS  Google Scholar 

  36. Hong YK, Shin JW, Detmar M: Development of the lymphatic vascular system: A mystery unravels. Dev Dyn 231: 462–473, 2004

    PubMed  CAS  Google Scholar 

  37. Achen MG, McColl BK, Stacker SA: Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7: 121–127, 2005

    PubMed  CAS  Google Scholar 

  38. Azzali G: Transendothelial transport and migration in vessels of the apparatus lymphaticus periphericus absorbens (ALPA). Int Rev of Cytology 230: 41–87, 2003

    CAS  Google Scholar 

  39. Pasqui D, Rossi A, Barbucci R, Lamponi S, Gerli R, Weber E: Hyaluronan and sulphated hyaluronan micropatterns: Effect of chemical and topographic cues on lymphatic endothelial cell alignment and proliferation. Lymphology 28: 50–65, 2005

    Google Scholar 

  40. Ferrell RE, Levinson KL, Esman JH, Kimak MA, Lawrence EC, Barmada MM, Finegold DN: Hereditary lymphedema: Evidence for linkage and genetic heterogeneity. Hum Mol Genet 7: 2073–2078, 1998

    PubMed  CAS  Google Scholar 

  41. Witte MH, Erickson R, Bernas M, Andrade M, Reiser F, Conlon W, Hoyme HE, Witte CL: Phenotypic and genotypic heterogeneity in familial Milroy lymphedema. Lymphology 31: 145–155, 1998

    PubMed  CAS  Google Scholar 

  42. Evans AL, Brice G, Sotirova V, Mortimer P, Beninson J, Burnand K, Rosbotham J, Child A, Sarfarazi M: Mapping of primary congenital lymphedema to the 5q35.3 region. Am J Hum Genet 64: 547–555, 1999

    PubMed  CAS  Google Scholar 

  43. Karkkainen MJ, Ferrell RE, Lawrence EC, Kimak MA, Levinson KL, McTigue MA, Alitalo K, Finegold DN: Missense mutations interfere with vascular endothelial growth factor receptor-3 signaling in primary lymphedema. Nature Genet 25: 153–159, 2000

    PubMed  CAS  Google Scholar 

  44. Fang, JM, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW: Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67: 1382–1388, 2000

    PubMed  CAS  Google Scholar 

  45. Kriederman BM, Myloyde TL, Witte MH, Dagenais SL, Witte CL, Rennels M, Bernas MJ, Lynch MT, Erickson RP, Caulder MS, Miura N, Jackson D, Brooks BP, Glover TW: Foxc2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Molec Genet 12: 1179–1185, 2003

    PubMed  CAS  Google Scholar 

  46. Iida K, Koseki H, Kakinuma H, Kato N, Mizutani-Koseki Y, Ohuchi H, Yoshioka H, Noji S, Kawamura K, Kataoka Y, Ueno F, Taniguchi M, Yoshida N, Sugiyama T, Miura N: Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124: 4627–4638, 1997

    PubMed  CAS  Google Scholar 

  47. Petrova TV, Karpanen T, Norrmén C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Ylæ-Herttuala S, Miura N, Alitalo K: Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Med 10: 974–981, 2004

    PubMed  CAS  Google Scholar 

  48. Irrthum A, Devriend K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns J-P, Van Steensel AM, Vikkula M: Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasis. Am J Hum Genet 72: 1470–1478, 2003

    PubMed  CAS  Google Scholar 

  49. Northup KA, Witte MH, Witte CL: Syndromic classification of hereditary lymphedema. Lymphology 36: 162–189, 2003

    PubMed  CAS  Google Scholar 

  50. Witte MH, Witte CL: What we don't know about cancer. Epilogue. In Otter W, Root-Bernstein R, Koten J-W (eds) What is Cancer? Theories on Carcinogenesis. Anticancer Research 19: 4919–4934, 1999

    PubMed  CAS  Google Scholar 

  51. Pepper MS, Skobe M: Lymphatic endothelium: Morphological, molecular and functional properties. J Cell Biol 163: 209–213, 2003

    PubMed  CAS  Google Scholar 

  52. Wilting J, Hawighorst T, Hecht M, Christ B, Papoutsi M: Development of lymphatic vessel tumor lymphangiogenesis and lymphatic invasion. Curr Med Chem (in press), 2005

  53. van der Putte SCJ: The development of the lymphatic system in man. Adv Anat Embryol Cell Biol 51: l–60, 1975

    Google Scholar 

  54. Clark ER, Clark EL: On the origin and early development of the lymphatic system of the chick. Contr Embryol 9: 447–482, 1920

    Google Scholar 

  55. Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck C: A Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100: 339–349, 1987

    PubMed  CAS  Google Scholar 

  56. Sabin FR: The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am J Anat 9: 43–91, 1909

    Google Scholar 

  57. Huntington GS: The genetic interpretation of the development of the mammalian lymphatic system. Anat Rec 2: 19–46, 1908

    Google Scholar 

  58. Jeltsch M, Tammela T, Alitalo K, Wilting J: Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res 314: 69–84, 2003

    PubMed  CAS  Google Scholar 

  59. Joukov V, Kumar V, Sorsa T, Arighi E, Weich H, Saksela O, Alitalo K: A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation and vascular permeability activities. J Bio Chem 273: 6599–6602, 1996

    Google Scholar 

  60. Siegried G, Basak A, Cromlish JA, Benjannet S, Marchinkiewicz J, Chrétien, Seidah NG, Khatib A-M: The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest 111: 1723–1732, 2003

    Google Scholar 

  61. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K: Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5: 74–80, 2004

    PubMed  CAS  Google Scholar 

  62. Sixt M, Kanazawa N, Seig M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L: The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22: 19–29, 2005

    PubMed  CAS  Google Scholar 

  63. Oliver G: Lymphatic vasculature development. Nat Rev Immunol 4: 35–45, 2004

    PubMed  CAS  Google Scholar 

  64. Földi M: Physiologieund pathologie des lymphgefass-systems. In Meesen H (ed) Handbuch der Allgemeiner Pathologie, vol. III part 6. Springer, Berlin, 1972, pp. 239–310

    Google Scholar 

  65. Casley-Smith JR, Vincent AH: The quantitative morphology of interstitial tissue channels in some tissues of the rat and rabbit. Tissue Cell 10: 571–584 1978

    Google Scholar 

  66. Zang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol Berl 83: 233–239, 1992

    Google Scholar 

  67. Schmid-Schönbein GW: Microlymphatics and lymph flow. Physio Rev 70: 987–1028, 1990

    Google Scholar 

  68. McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, McHale NG: Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res 310: 77–84, 2002

    PubMed  CAS  Google Scholar 

  69. Zweifach B, Prather JW: Micromanipulation of pressure in terminal lymphatics in the mesentery. Amer J Physiol 228: 1326–1335, 1975

    PubMed  CAS  Google Scholar 

  70. Generish H: Die Aufnahme der Lymphe durch die sehnen und Fascien der Skelettmuskeln. Arbeiten aus der Physiologischen Anstalt Leipzig 5: 53, 1871

    Google Scholar 

  71. Heidenhain R: Versuche und Fragen zur Lehre von der Lymph Bildung. Pflugers Archiv 49: 209–301, 1891

    Google Scholar 

  72. White JC, Field ME, Drinker CK: On the protein content and normal flow of lymph from the foot of the dog. Amer J Physiol 103: 34–44, 1933

    CAS  Google Scholar 

  73. McCarrel JD: Cervical lymph pressure in the dog. Am J Physiol 127:154–160, 1939

    Google Scholar 

  74. Morris B: Lymphatic contractility and its significance in lymph propulsion. In Viamonte M (ed) Progress in Lymphology II, Georg Thieme Verlag, Stuttgart, 1970, pp. 60–62

    Google Scholar 

  75. Drinker CK, Yoffey JM: Lymph flow and lymph pressure. In Lymphatics, Lymph and Lymphoid Tissue. Harvard University Press, Cambridge, 1941, pp. 112–145

    Google Scholar 

  76. Courtice FC, Simmonds WJ: Physiological significance of lymph drainage of the serious cavities and lungs. Physiol Reviews 34: 419–448, 1954

    CAS  Google Scholar 

  77. Hewson W: A description of the lymphatic system. In experimental enquiries part II, London, 1774, p. 126

  78. Florey H: Observations on the contractility of lacteals. Part II. J Physiol 63: 1–18, 1927

    Google Scholar 

  79. Carleton HM, Florey H: The mammalian lacteal: Its histological structure in relation to its physiological properties. Proceedings of the Royal Society B 102: 110–118, 1927

    Google Scholar 

  80. Smith RO: Lymphatic contractility—a possible intrinsic mechanism of lymphatic vessels for the transport of lymph. J Experimental Med 90: 497–509, 1949

    Google Scholar 

  81. McGeown JG, McHale NG, Thornbury KD: The role of external compression and movement in lymph propulsion in the sheep hind limb. J Physiol 387: 83–93, 1987

    PubMed  CAS  Google Scholar 

  82. McHale NG, Thornbury KD: A method for studying lymphatic pumping activity in conscious and anaesthetised sheep. J Physiol 378: 109–118, 1986

    PubMed  CAS  Google Scholar 

  83. Todd GL, Bernard GR: The sympathetic innervation of the cervical lymph duct of the dog. Anatomical Record 177: 303–316, 1973

    PubMed  CAS  Google Scholar 

  84. Alessandrini C, Gerli R, Sacchi G, Pucci AM, Fruschelli C: Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig. Lymphology 14: 1–6, 1981

    PubMed  CAS  Google Scholar 

  85. McHale NG: Innervation of the lymphatic circulation. In Johnston, MG (ed) Experimental biology of the lymphatic circulation, Elsevier Science Publishers, B.V. pp 121–140 1985

    Google Scholar 

  86. Hollywood MA, McHale NG: Mediation of excitatory neurotransmission by the release of ATP and noradrenaline in sheep mesenteric lymphatic vessels. J Physiol 481: 415–423, 1994

    PubMed  CAS  Google Scholar 

  87. Foy WL, Allen JM, McKillop JM, Goldsmith JP, Johnston CF, Buchanan KD: Substance P and gastrin releasing peptide in bovine mesenteric lymphatic vessels: Chemical characterization and action. Peptides 10: 533–537, 1989

    PubMed  CAS  Google Scholar 

  88. McGeown JG, McHale NG, Thornbury KD: The effect of electrical stimulation of the sympathetic chain on popliteal efferent lymph flow in the anaesthetised sheep. J Physiol 393: 123–133, 1987

    PubMed  CAS  Google Scholar 

  89. McHale NG, Adair TH: Reflex modulation of lymphatic pumping in Sheep Circ Res 64: 1165–1171, 1989

    CAS  Google Scholar 

  90. McCullough JS, McHale NG: Pressure flow relationships in isolated bovine mesenteric lymphatics during field stimulation. J Physiol 396: 177P, 1988

    Google Scholar 

  91. Elias R, Johnston MG: Modulation of lymphatic pumping by lymph-borne factors following intravenous endotoxin administration in sheep. J Appl Physiol 68: 199–208, 1990

    PubMed  CAS  Google Scholar 

  92. Giron LT, Crutcher KA, Davis JN: Lymph nodes —a possible site for sympathetic neuronal regulation of immune responses. Ann Neurol 8: 520–525, 1980

    PubMed  CAS  Google Scholar 

  93. Popper P, Mantyh CR, Vigna SR, Maggio JE, Mantyh PW: The localisation of sensory nerve fibres and receptor binding sites for sensory neuropeptides in canine mesenteric lymph nodes. Peptides 9: 257–267, 1988

    PubMed  CAS  Google Scholar 

  94. Thornbury KD, McHale NG, McGeown JG: Contribution of lymph formation in the popliteal node to efferent lymph flow in the sheep. Exp Physiol 75: 75–80, 1990

    PubMed  CAS  Google Scholar 

  95. McHale NG, Thornbury KD: Sympathetic stimulation causes increased output of lymphocytes from the popliteal node in anaesthetized sheep. Exp Physiol 75: 847–850, 1990

    PubMed  CAS  Google Scholar 

  96. Jacobsson S, Kjellmer I: Flow and protein content of lymph in resting and exercising muscle. Acta Physiol Scand 60: 278–285, 1964

    PubMed  CAS  Google Scholar 

  97. Adair TH, Moffatt DS, Paulsen AW, Guyton AC: Quantitation of changes in lymph protein-concentration during lymph-node transit. Am J Physiol 243: H351–H353, 1982

    PubMed  CAS  Google Scholar 

  98. Adair TH, Guyton AC: Lymph formation and its modification by the lymphatic system. In Johnston MG (ed), Experimental biology of the lymphatic circulation. Elsevier Science Publishers, B.V., 1985, pp. 13–44

    Google Scholar 

  99. Thornbury KD, McHale NG, Allen JM, Hughes G: Nerve-mediated contractions of sheep mesenteric lymph node capsules. J Physiol 422: 513–522, 1990

    PubMed  CAS  Google Scholar 

  100. Horstmann E: Uber die functionelle struktur des mesenterialen lymphgefasse. Morphol Jahrb 91: 483, 1952

    Google Scholar 

  101. Horstmann E: Beobachtungen zur motorik der lymphgefasse. Pflugers Arch ges Physiol 269: 511–519, 1959

    CAS  Google Scholar 

  102. Mawhinney HJD, Roddie IC: Spontaneous activity in isolated bovine mesenteric lymphatics. J Physiol 229: 339–348, 1973

    PubMed  CAS  Google Scholar 

  103. Allen JM, McHale NG: The effects of known K+ channel blockers on electrical activity in lymphatic smooth muscle. Pflugers Archiv 411: 167–172, 1988

    PubMed  CAS  Google Scholar 

  104. DiFrancesco D: The contribution of the ‘pacemaker’ current (If) to generation of spontaneous activity in rabbit sinoatrial node myocytes. J Physiol 434: 23–40, 1991

    PubMed  CAS  Google Scholar 

  105. McCloskey KD, Toland HM, Hollywood MA, Thornbury KD, McHale NG: Hyperpolarization-activated inward current in isolated sheep mesenteric lymphatic smooth muscle. J Physiol 521: 201–211, 1999

    PubMed  CAS  Google Scholar 

  106. Sanders KM: A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111: 492–515, 1996

    PubMed  CAS  Google Scholar 

  107. Thuneberg L, Rumessen JJ, Mikkelsen HB: The interstitial cells of cajal: Intestinal pacemaker cells? In: Wienbeck M (ed) Motility of the digestive tract. Raven Press, New York, 1982, pp. 115–122

    Google Scholar 

  108. McHale NG, Meharg MK: Co-ordination of pumping in isolated bovine lymphatic vessels. J Physiol 450: 503–512, 1992

    PubMed  CAS  Google Scholar 

  109. McHale NG, Roddie IC: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J Physiol 261: 255–269, 1976

    PubMed  CAS  Google Scholar 

  110. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K: Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92: 3566–3570, 1995

    PubMed  CAS  Google Scholar 

  111. Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA: Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95: 548–553, 1998

    PubMed  CAS  Google Scholar 

  112. Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J, Sturzl M, Kerjaschki D, Alitalo K, Tschachler E: Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab Invest 79: 243–251, 1999

    PubMed  CAS  Google Scholar 

  113. Jackson DG, Prevo R, Clasper S, Banerji S: LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 22: 317–321, 2001

    PubMed  CAS  Google Scholar 

  114. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M: Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162: 575–586, 2003

    PubMed  CAS  Google Scholar 

  115. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K: Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20: 4762–4773, 2001

    PubMed  CAS  Google Scholar 

  116. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M: Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99: 16069–16074, 2002

    PubMed  CAS  Google Scholar 

  117. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D: Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194: 797–808, 2001

    PubMed  CAS  Google Scholar 

  118. Rousseau DL, Jr., Ross MI, Johnson MM, Prieto VG, Lee JE, Mansfield PF, Gershenwald JE: Revised American joint committee on cancer staging criteria accurately predict sentinel lymph node positivity in clinically node-negative melanoma patients. Ann Surg Oncol 10: 569–574, 2003

    PubMed  Google Scholar 

  119. Pawlik TM, Ross MI, Gershenwald JE: Lymphatic mapping in the molecular era. Ann Surg Oncol 11: 362–374, 2004

    PubMed  Google Scholar 

  120. Pajusola K, Aprelikova O, Pelicci G, Weich H, Claesson-Welsh L, Alitalo K: Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene 9: 3545–3555, 1994

    PubMed  CAS  Google Scholar 

  121. Furukawa H, Calderon TL, Bartos DP, Mitchell J, Prieto VG, McIntyre B, Gershenwald JE: Molecular characterization of human sentinel lymphatic endothelial cells: Emerging insights into the biology of melanoma lymphatic metastasis. Presented at the Second International Melanoma Research Congress, Phoenix, AZ, November 13–16, 2004

  122. Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K: Lymphatic endothelial reprogramming of vascular endothelial cells by the PROX-1 homeobox transcription factor. EMBO J 21: 4593–4599, 2002

    PubMed  CAS  Google Scholar 

  123. Breiteneder-Geleff S, Soleiman A, Horvat R, Amann G, Kowalski H, Kerjaschki D: Podoplanin—a specific marker for lymphatic endothelium expressed in angiosarcoma. Verh Dtsch Ges Pathol 83: 270–275, 1999

    PubMed  CAS  Google Scholar 

  124. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M: T1 alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22: 3546–3556, 2003

    PubMed  CAS  Google Scholar 

  125. Nibbs RJB, Wylie SM, Yang J, Landau NR, Graham GJ: Cloning and characterization of a novel promiscuous human beta chemokine receptor D6. J Biol Chem 272: 32078–32083, 1997

    PubMed  CAS  Google Scholar 

  126. Jackson DG: Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 112: 526–538, 2004

    PubMed  CAS  Google Scholar 

  127. Mandriota S, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson D, Orci L, Alitalo K, Christofori G, Pepper MS: Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20: 672–682, 2001

    PubMed  CAS  Google Scholar 

  128. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RE, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Med 7: 186–191, 2001

    PubMed  CAS  Google Scholar 

  129. Skobe M, Hawighorst T, Jackson D, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M: Induction of tumour lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med 7: 192–198, 2001

    PubMed  CAS  Google Scholar 

  130. Beasley NJP, Prevo R, Banerji S, Leek R, Moore J, von Trappen P, Cox G, Harris AL, Jackson DG: Lymphangiogenesis is linked to tumour metastasis in head and neck cancer. Cancer Res 62: 1315–1320, 2002

    PubMed  CAS  Google Scholar 

  131. Von Marschall Z, Scholz A, Stacker S, Achen M, Jackson DG, Alves F, Schirner M, Haberey M, Thierauch K-H, Wiedenmann B, Rosewicz S: Vascular endothelial growth factor-D induces lymphangiogenesis and lymphatic metastasis in models of ductal pancreatic cancer. Int J Oncol 27: 669–679, 2005

    Google Scholar 

  132. Dadras S, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M: Tumor lymphangiogenesis: A novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162: 1951–1960, 2003

    PubMed  Google Scholar 

  133. Bono P, Wasenius V, Lundin J, Jackson DG, Joensuu H: High peritumoral LYVE-1 positive lymphatic vessel numbers are associated with axillary lymph node metastases and poor outcome in early breast cancer. Clin Cancer Res 10: 7144–7149, 2004

    PubMed  CAS  Google Scholar 

  134. Williams CSM, Leek RD, Robson AM, Banerji S, Prevo R, Harris AL, Jackson DG: Absence of intratumoral lymph vessels and lymphangiogenesis in human breast cancer. J Pathol 200: 195–206, 2003

    PubMed  CAS  Google Scholar 

  135. Van Trappen PO, Steele D, Lowe DG, Baithun S, Beasley N, Thiele W, Weich H, Krishnan J, Shepherd JH, Pepper MS, Jackson DG, Sleeman JP, Jacobs IJ: Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 201: 544–554, 2003

    PubMed  Google Scholar 

  136. Trojan L, Michel MS, Rensch F, Jackson DG, Alken P and Grobholz R: Lymph and blood vessel architecture in benign and malignant prostatic tissue: Lack of lymphangiogenesis in prostate carcinoma assessed with novel lymphatic marker lymphatic vessel endothelial hyaluronan receptor (LYVE-1). J Urol 172: 103–107, 2004

    PubMed  CAS  Google Scholar 

  137. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK: Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Res 60: 4324–4327, 2000

    PubMed  CAS  Google Scholar 

  138. Padera TP, Kadambi A, Di Tomaso E, Mouta Carreira C, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK: Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296: 1883–1886, 2002

    PubMed  CAS  Google Scholar 

  139. Jain RK, Fenton BT: Intratumoral lymphatic vessels: A case of mistaken identity or malfunction? J Natl Cancer Inst 94: 417–421, 2002

    PubMed  Google Scholar 

  140. Rubbia-Brandt L, Terris B, Giostra E, Dousset B, Morel P, Pepper MS: Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res 10: 6919–6928, 2004

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlys H. Witte.

Additional information

Presented as Session I of the First International Symposium on Cancer Metastasis and the Lymphovascular System. April 28–30, 2005, San Francisco, CA; Chaired by Marlys H. Witte

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, M.H., Jones, K., Wilting, J. et al. Structure function relationships in the lymphatic system and implications for cancer biology. Cancer Metastasis Rev 25, 159–184 (2006). https://doi.org/10.1007/s10555-006-8496-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-8496-2

Keywords

Navigation