Skip to main content

Advertisement

Log in

Novel functions of TIMPs in cell signaling

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases (MMPs) and the balance between MMPs/TIMPs regulates the extracellular matrix (ECM) turnover and remodeling during normal development and pathogenesis. Increasing evidence indicates a much more complex role for TIMPs during tumor progression and angiogenesis, in addition to their regulation of MMP-mediated ECM degradation. In this article, we review both the MMP-dependent and -independent actions of TIMPs for the regulation of cell death, cell proliferation, and angiogenesis, with a particular emphasis on TIMP-1 in the regulation of tetraspanin/integrin-mediated cell survival signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fata JE, Werb Z, Bissell MJ: Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6: 1–11, 2004

    PubMed  CAS  Google Scholar 

  2. Saunders S, Jalkanen M, O'Farrell S, Bernfield M: Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol 108: 1547–1556, 1989

    PubMed  CAS  Google Scholar 

  3. Lightner VA, Erickson HP: Binding of hexabrachion (tenascin) to the extracellular matrix and substratum and its effect on cell adhesion. J Cell Sci 95(Pt 2): 263–277, 1990

    PubMed  CAS  Google Scholar 

  4. Hathaway HJ, Shur BD: Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta1,4-galactosyltransferase. Development 122: 2859–2872, 1996

    PubMed  CAS  Google Scholar 

  5. Muschler J, Levy D, Boudreau R, Henry M, Campbell K, Bissell MJ: A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res 62: 7102–7109, 2002

    PubMed  CAS  Google Scholar 

  6. Durbeej M, Ekblom P: Dystroglycan and laminins: glycoconjugates involved in branching epithelial morphogenesis. Exp Lung Res 23: 109–118, 1997

    PubMed  CAS  Google Scholar 

  7. Vogel WF: Collagen-receptor signaling in health and disease. Eur J Dermatol 11: 506–514, 2001

    PubMed  CAS  Google Scholar 

  8. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Gotte M, Malle E, Schaefer RM, Grone HJ: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115: 2223–2233, 2005

    PubMed  CAS  Google Scholar 

  9. Rohrbach DH Molecular and Cellular Aspects of Basement Membranes. Academic Press, 1993.

  10. Woessner JF, Jr.: Matrix metalloproteinases and their inhibitors in connective tissue remodeling. Faseb J 5: 2145–2154, 1991

    PubMed  CAS  Google Scholar 

  11. Kleiner DE, Jr., Stetler-Stevenson WG: Structural biochemistry and activation of matrix metalloproteases. Curr Opin Cell Biol 5: 891–897, 1993

    PubMed  CAS  Google Scholar 

  12. Matrisian LM: The matrix-degrading metalloproteinases. Bioessays 14: 455–463, 1992

    PubMed  CAS  Google Scholar 

  13. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85: 683–693, 1996

    PubMed  CAS  Google Scholar 

  14. Karadag A, Fedarko NS, Fisher LW: Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res 65: 11545–11552, 2005

    PubMed  CAS  Google Scholar 

  15. Yu Q, Stamenkovic I: Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13: 35–48, 1999

    PubMed  CAS  Google Scholar 

  16. Hojilla CV, Mohammed FF, Khokha R: Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 89: 1817–1821, 2003

    PubMed  CAS  Google Scholar 

  17. Stetler-Stevenson WG: Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103: 1237–1241, 1999

    PubMed  CAS  Google Scholar 

  18. Kleiner DE, Stetler-Stevenson WG: Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43 (Suppl): S42–51, 1999

    PubMed  CAS  Google Scholar 

  19. Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG: TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114: 171–180, 2003

    PubMed  CAS  Google Scholar 

  20. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9: 407–415, 2003

    PubMed  CAS  Google Scholar 

  21. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP: Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74: 111–122, 1997

    PubMed  CAS  Google Scholar 

  22. Murphy G, Willenbrock F: Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248: 496–510, 1995

    PubMed  CAS  Google Scholar 

  23. Spurr NK, Goodfellow PN, Docherty AJ: Chromosomal assignment of the gene encoding the human tissue inhibitor of metalloproteinases to Xp11.1-p11.4. Ann Hum Genet 51(Pt 3): 189–194, 1987

    PubMed  CAS  Google Scholar 

  24. Huebner K, Isobe M, Gasson JC, Golde DW, Croce CM: Localization of the gene encoding human erythroid-potentiating activity to chromosome region Xp11.1––Xp11.4. Am J Hum Genet 38: 819–826, 1986

    PubMed  CAS  Google Scholar 

  25. De Clerck Y, Szpirer C, Aly MS, Cassiman JJ, Eeckhout Y, Rousseau G: The gene for tissue inhibitor of metalloproteinases-2 is localized on human chromosome arm 17q25. Genomics 14: 782–784, 1992

    PubMed  Google Scholar 

  26. Apte SS, Mattei MG, Olsen BR: Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics 19: 86–90, 1994

    PubMed  CAS  Google Scholar 

  27. Wick M, Haronen R, Mumberg D, Burger C, Olsen BR, Budarf ML, Apte SS, Muller R: Structure of the human TIMP-3 gene and its cell cycle-regulated promoter. Biochem J 311(Pt 2): 549–554, 1995

    PubMed  CAS  Google Scholar 

  28. Olson TM, Hirohata S, Ye J, Leco K, Seldin MF, Apte SS: Cloning of the human tissue inhibitor of metalloproteinase-4 gene (TIMP4) and localization of the TIMP4 and Timp4 genes to human chromosome 3p25 and mouse chromosome 6, respectively. Genomics 51: 148–151, 1998

    PubMed  CAS  Google Scholar 

  29. Crocker SJ, Pagenstecher A, Campbell IL: The TIMPs tango with MMPs and more in the central nervous system. J Neurosci Res 75: 1–11, 2004

    PubMed  CAS  Google Scholar 

  30. Leco KJ, Apte SS, Taniguchi GT, Hawkes SP, Khokha R, Schultz GA, Edwards DR: Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett 401: 213–217, 1997

    PubMed  CAS  Google Scholar 

  31. Yoshiji H, Gomez DE, Thorgeirsson UP: Enhanced RNA expression of tissue inhibitor of metalloproteinases-1 (TIMP-1) in human breast cancer. Int J Cancer 69: 131–134, 1996

    PubMed  CAS  Google Scholar 

  32. Yoshiji H, Harris SR, Raso E, Gomez DE, Lindsay CK, Shibuya M, Sinha CC, Thorgeirsson UP: Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int J Cancer 75: 81–87, 1998

    PubMed  CAS  Google Scholar 

  33. McCarthy K, Maguire T, McGreal G, McDermott E, O'Higgins N, Duffy MJ: High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 84: 44–48, 1999

    PubMed  CAS  Google Scholar 

  34. Ree AH, Florenes VA, Berg JP, Maelandsmo GM, Nesland JM, Fodstad O: High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 3: 1623–1628, 1997

    PubMed  CAS  Google Scholar 

  35. Schrohl AS, Holten-Andersen MN, Peters HA, Look MP, Meijer-van Gelder ME, Klijn JG, Brunner N, Foekens JA: Tumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancer. Clin Cancer Res 10: 2289–2298, 2004

    PubMed  CAS  Google Scholar 

  36. Zeng ZS, Cohen AM, Zhang ZF, Stetler-Stevenson W, Guillem JG: Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res 1: 899–906, 1995

    PubMed  CAS  Google Scholar 

  37. Kossakowska AE, Urbanski SJ, Edwards DR: Tissue inhibitor of metalloproteinases-1 (TIMP-1) RNA is expressed at elevated levels in malignant non-Hodgkin's lymphomas. Blood 77: 2475–2481, 1991

    PubMed  CAS  Google Scholar 

  38. Fong KM, Kida Y, Zimmerman PV, Smith PJ: TIMP1 and adverse prognosis in non-small cell lung cancer. Clin Cancer Res 2: 1369–1372, 1996

    PubMed  CAS  Google Scholar 

  39. Aicher WK, Alexander D, Haas C, Kuchen S, Pagenstecher A, Gay S, Peter HH, Eibel H: Transcription factor early growth response 1 activity up-regulates expression of tissue inhibitor of metalloproteinases 1 in human synovial fibroblasts. Arthritis Rheum 48: 348–359, 2003

    PubMed  CAS  Google Scholar 

  40. Bachmeier BE, Vene R, Iancu CM, Pfeffer U, Mayer B, Noonan D, Albini A, Jochum M, Nerlich AG: Transcriptional control of cell density dependent regulation of matrix metalloproteinase and TIMP expression in breast cancer cell lines. Thromb Haemost 93: 761–769, 2005

    PubMed  CAS  Google Scholar 

  41. Botelho FM, Edwards DR, Richards CD: Oncostatin M stimulates c-Fos to bind a transcriptionally responsive AP-1 element within the tissue inhibitor of metalloproteinase-1 promoter. J Biol Chem 273: 5211–5218, 1998

    PubMed  CAS  Google Scholar 

  42. Logan SK, Garabedian MJ, Campbell CE, Werb Z: Synergistic transcriptional activation of the tissue inhibitor of metalloproteinases-1 promoter via functional interaction of AP-1 and Ets-1 transcription factors. J Biol Chem 271: 774–782, 1996

    PubMed  CAS  Google Scholar 

  43. Sohara N, Trojanowska M, Reuben A: Oncostatin M stimulates tissue inhibitor of metalloproteinase-1 via a MEK-sensitive mechanism in human myofibroblasts. J Hepatol 36: 191–199, 2002

    PubMed  CAS  Google Scholar 

  44. Kadri Z, Petitfrere E, Boudot C, Freyssinier JM, Fichelson S, Mayeux P, Emonard H, Hornebeck W, Haye B, Billat C: Erythropoietin induction of tissue inhibitors of metalloproteinase-1 expression and secretion is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Cell Growth Differ 11: 573–580, 2000

    PubMed  CAS  Google Scholar 

  45. Murate T, Yamashita K, Isogai C, Suzuki H, Ichihara M, Hatano S, Nakahara Y, Kinoshita T, Nagasaka T, Yoshida S, Komatsu N, Miura Y, Hotta T, Fujimoto N, Saito H, Hayakawa T: The production of tissue inhibitors of metalloproteinases (TIMPs) in megakaryopoiesis: possible role of platelet- and megakaryocyte-derived TIMPs in bone marrow fibrosis. Br J Haematol 99: 181–189, 1997

    PubMed  CAS  Google Scholar 

  46. Hall MC, Young DA, Waters JG, Rowan AD, Chantry A, Edwards DR, Clark IM: The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J Biol Chem 278: 10304–10313, 2003

    PubMed  CAS  Google Scholar 

  47. Li G, Fridman R, Kim HR: Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res 59: 6267–6275, 1999

    PubMed  CAS  Google Scholar 

  48. Liu XW, Bernardo MM, Fridman R, Kim HR: Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. J Biol Chem 278: 40364–40372, 2003

    PubMed  CAS  Google Scholar 

  49. Liu XW, Taube ME, Jung KK, Dong Z, Lee YJ, Roshy S, Sloane BF, Fridman R, Kim HR: Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells from extrinsic cell death: a potential oncogenic activity of tissue inhibitor of metalloproteinase-1. Cancer Res 65: 898–906, 2005

    PubMed  CAS  Google Scholar 

  50. Lee SJ, Yoo HJ, Bae YS, Kim HJ, Lee ST: TIMP-1 inhibits apoptosis in breast carcinoma cells via a pathway involving pertussis toxin-sensitive G protein and c-Src. Biochem Biophys Res Commun 312: 1196–1201, 2003

    PubMed  CAS  Google Scholar 

  51. Kadri Z, Maouche-Chretien L, Rooke HM, Orkin SH, Romeo PH, Mayeux P, Leboulch P, Chretien S: Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol Cell Biol 25: 7412–7422, 2005

    PubMed  CAS  Google Scholar 

  52. Guedez L, Courtemanch L, Stetler-Stevenson M: Tissue inhibitor of metalloproteinase (TIMP)-1 induces differentiation and an antiapoptotic phenotype in germinal center B cells. Blood 92: 1342–1349, 1998

    PubMed  CAS  Google Scholar 

  53. Murphy G, Houbrechts A, Cockett MI, Williamson RA, O'Shea M, Docherty AJ: The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 30: 8097–8102, 1991

    PubMed  CAS  Google Scholar 

  54. Williamson RA, Marston FA, Angal S, Koklitis P, Panico M, Morris HR, Carne AF, Smith BJ, Harris TJ, Freedman RB: Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP). Biochem J 268: 267–274, 1990

    PubMed  CAS  Google Scholar 

  55. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K: Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 298: 29–32, 1992

    PubMed  CAS  Google Scholar 

  56. Huang W, Meng Q, Suzuki K, Nagase H, Brew K: Mutational study of the amino-terminal domain of human tissue inhibitor of metalloproteinases 1 (TIMP-1) locates an inhibitory region for matrix metalloproteinases. J Biol Chem 272: 22086–22091, 1997

    PubMed  CAS  Google Scholar 

  57. Willenbrock F, Murphy G: Structure-function relationships in the tissue inhibitors of metalloproteinases. Am J Respir Crit Care Med 150: S165–170, 1994

    PubMed  CAS  Google Scholar 

  58. Huang W, Suzuki K, Nagase H, Arumugam S, Van Doren SR, Brew K: Folding and characterization of the amino-terminal domain of human tissue inhibitor of metalloproteinases-1 (TIMP-1) expressed at high yield in E. coli. FEBS Lett 384: 155–161, 1996

    PubMed  CAS  Google Scholar 

  59. Blavier L, Henriet P, Imren S, Declerck YA: Tissue inhibitors of matrix metalloproteinases in cancer. Ann N Y Acad Sci 878: 108–119, 1999

    PubMed  CAS  Google Scholar 

  60. Lambert E, Dasse E, Haye B, Petitfrere E: TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49: 187–198, 2004

    PubMed  Google Scholar 

  61. Olson MW, Bernardo MM, Pietila M, Gervasi DC, Toth M, Kotra LP, Massova I, Mobashery S, Fridman R: Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9. Differential rates for activation by stromelysin 1. J Biol Chem 275: 2661–2668, 2000

    PubMed  CAS  Google Scholar 

  62. Olson MW, Gervasi DC, Mobashery S, Fridman R: Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem 272: 29975–29983, 1997

    PubMed  CAS  Google Scholar 

  63. Hernandez-Barrantes S, Shimura Y, Soloway PD, Sang QA, Fridman R: Differential roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP. Biochem Biophys Res Commun 281: 126–130, 2001

    PubMed  CAS  Google Scholar 

  64. Kai HS, Butler GS, Morrison CJ, King AE, Pelman GR, Overall CM: Utilization of a novel recombinant myoglobin fusion protein expression system to characterize the tissue inhibitor of metalloproteinase (TIMP)-4 and TIMP-2 C-terminal domain and tails by mutagenesis. The importance of acidic residues in binding the MMP-2 hemopexin C-domain. J Biol Chem 277: 48696–48707, 2002

    PubMed  CAS  Google Scholar 

  65. Langton KP, Barker MD, McKie N: Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby's fundus dystrophy mutation. J Biol Chem 273: 16778–16781, 1998

    PubMed  CAS  Google Scholar 

  66. Frisch SM, Francis H: Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619–626, 1994

    PubMed  CAS  Google Scholar 

  67. Boudreau N, Werb Z, Bissell MJ: Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc Natl Acad Sci USA 93: 3509–3513, 1996

    PubMed  CAS  Google Scholar 

  68. Boudreau N, Sympson CJ, Werb Z, Bissell MJ: Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267: 891–893, 1995

    PubMed  CAS  Google Scholar 

  69. Alexander CM, Howard EW, Bissell MJ, Werb Z: Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J Cell Biol 135: 1669–1677, 1996

    PubMed  CAS  Google Scholar 

  70. Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJ, Benyon C, Iredale JP: Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 277: 11069–11076, 2002

    PubMed  CAS  Google Scholar 

  71. Meng Q, Malinovskii V, Huang W, Hu Y, Chung L, Nagase H, Bode W, Maskos K, Brew K: Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. J Biol Chem 274: 10184–10189, 1999

    PubMed  CAS  Google Scholar 

  72. Smith MR, Kung H, Durum SK, Colburn NH, Sun Y: TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 9: 770–780, 1997

    PubMed  CAS  Google Scholar 

  73. Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, Kung HF, Colburn NH, Sun Y: Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis 17: 1805–1811, 1996

    PubMed  CAS  Google Scholar 

  74. Oelmann E, Herbst H, Zuhlsdorf M, Albrecht O, Nolte A, Schmitmann C, Manzke O, Diehl V, Stein H, Berdel WE: Tissue inhibitor of metalloproteinases 1 is an autocrine and paracrine survival factor, with additional immune-regulatory functions, expressed by Hodgkin/Reed-Sternberg cells. Blood 99: 258–267, 2002

    PubMed  CAS  Google Scholar 

  75. Guedez L, Stetler-Stevenson WG, Wolff L, Wang J, Fukushima P, Mansoor A, Stetler-Stevenson M: In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 102: 2002–2010, 1998

    PubMed  CAS  Google Scholar 

  76. Guedez L, McMarlin AJ, Kingma DW, Bennett TA, Stetler-Stevenson M, Stetler-Stevenson WG: Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt's lymphoma via divergent effects on tumor growth and angiogenesis. Am J Pathol 158: 1207–1215, 2001

    PubMed  CAS  Google Scholar 

  77. Docherty AJ, Lyons A, Smith BJ, Wright EM, Stephens PE, Harris TJ, Murphy G, Reynolds JJ: Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318: 66–69, 1985

    PubMed  CAS  Google Scholar 

  78. Niskanen E, Gasson JC, Teates CD, Golde DW: In vivo effect of human erythroid-potentiating activity on hematopoiesis in mice. Blood 72: 806–810, 1988

    PubMed  CAS  Google Scholar 

  79. Murate T, Yamashita K, Ohashi H, Kagami Y, Tsushita K, Kinoshita T, Hotta T, Saito H, Yoshida S, Mori KJ, et al.: Erythroid potentiating activity of tissue inhibitor of metalloproteinases on the differentiation of erythropoietin-responsive mouse erythroleukemia cell line, ELM-I-1-3, is closely related to its cell growth potentiating activity. Exp Hematol 21: 169–176, 1993

    PubMed  CAS  Google Scholar 

  80. Stetler-Stevenson WG, Bersch N, Golde DW: Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett 296: 231–234, 1992

    PubMed  CAS  Google Scholar 

  81. Bertaux B, Hornebeck W, Eisen AZ, Dubertret L: Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J Invest Dermatol 97: 679–685, 1991

    PubMed  CAS  Google Scholar 

  82. Corcoran ML, Stetler-Stevenson WG: Tissue inhibitor of metalloproteinase-2 stimulates fibroblast proliferation via a cAMP-dependent mechanism. J Biol Chem 270: 13453–13459, 1995

    PubMed  CAS  Google Scholar 

  83. Hayakawa T, Yamashita K, Ohuchi E, Shinagawa A: Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci 107 (Pt 9): 2373–2379, 1994

    PubMed  CAS  Google Scholar 

  84. Yamashita K, Suzuki M, Iwata H, Koike T, Hamaguchi M, Shinagawa A, Noguchi T, Hayakawa T: Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). FEBS Lett 396: 103–107, 1996

    PubMed  CAS  Google Scholar 

  85. Yang TT, Hawkes SP: Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc Natl Acad Sci USA 89: 10676–10680, 1992

    PubMed  CAS  Google Scholar 

  86. Celiker MY, Wang M, Atsidaftos E, Liu X, Liu YE, Jiang Y, Valderrama E, Goldberg ID, Shi YE: Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene 20: 4337–4343, 2001

    PubMed  CAS  Google Scholar 

  87. Fata JE, Leco KJ, Moorehead RA, Martin DC, Khokha R: Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev Biol 211: 238–254, 1999

    PubMed  CAS  Google Scholar 

  88. Mohammed FF, Pennington CJ, Kassiri Z, Rubin JS, Soloway PD, Ruther U, Edwards DR, Khokha R: Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology 41: 857–867, 2005

    PubMed  CAS  Google Scholar 

  89. Martin DC, Fowlkes JL, Babic B, Khokha R: Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1. J Cell Biol 146: 881–892, 1999

    PubMed  CAS  Google Scholar 

  90. Porter JF, Sharma S, Wilson DL, Kappil MA, Hart RP, Denhardt DT: Tissue Inhibitor of Metalloproteinases-1 Stimulates Gene Expression in MDA-MB-435 Human Breast Cancer Cells by Means of its Ability to Inhibit Metalloproteinases. Breast Cancer Res Treat 94: 185–193, 2005

    PubMed  CAS  Google Scholar 

  91. Golde DW, Bersch N, Quan SG, Lusis AJ: Production of erythroid-potentiating activity by a human T-lymphoblast cell line. Proc Natl Acad Sci U S A 77: 593–596, 1980

    PubMed  CAS  Google Scholar 

  92. Avalos BR, Kaufman SE, Tomonaga M, Williams RE, Golde DW, Gasson JC: K562 cells produce and respond to human erythroid-potentiating activity. Blood 71: 1720–1725, 1988

    PubMed  CAS  Google Scholar 

  93. O'Shea M, Willenbrock F, Williamson RA, Cockett MI, Freedman RB, Reynolds JJ, Docherty AJ, Murphy G: Site-directed mutations that alter the inhibitory activity of the tissue inhibitor of metalloproteinases-1: importance of the N-terminal region between cysteine 3 and cysteine 13. Biochemistry 31: 10146–10152, 1992

    PubMed  Google Scholar 

  94. Chesler L, Golde DW, Bersch N, Johnson MD: Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1. Blood 86: 4506–4515, 1995

    PubMed  CAS  Google Scholar 

  95. Hoegy SE, Oh HR, Corcoran ML, Stetler-Stevenson WG: Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J Biol Chem 276: 3203–3214, 2001

    PubMed  CAS  Google Scholar 

  96. Wingfield PT, Sax JK, Stahl SJ, Kaufman J, Palmer I, Chung V, Corcoran ML, Kleiner DE, Stetler-Stevenson WG: Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J Biol Chem 274: 21362–21368, 1999

    PubMed  CAS  Google Scholar 

  97. Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature 407: 249–257, 2000

    PubMed  CAS  Google Scholar 

  98. Chun TH, Sabeh F, Ota I, Murphy H, McDonagh KT, Holmbeck K, Birkedal-Hansen H, Allen ED, Weiss SJ: MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol 167: 757–767, 2004

    PubMed  CAS  Google Scholar 

  99. Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD: Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161: 6845–6852, 1998

    PubMed  CAS  Google Scholar 

  100. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J: The generation of endostatin is mediated by elastase. Cancer Res 59: 6052–6056, 1999

    PubMed  CAS  Google Scholar 

  101. Brew K, Dinakarpandian D, Nagase H: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477: 267–283, 2000

    PubMed  CAS  Google Scholar 

  102. Baker AH, Edwards DR, Murphy G: Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115: 3719–3727, 2002

    PubMed  CAS  Google Scholar 

  103. Tan HK, Heywood D, Ralph GS, Bienemann A, Baker AH, Uney JB: Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons. Mol Cell Neurosci 22: 98–106, 2003

    PubMed  CAS  Google Scholar 

  104. Luparello C, Avanzato G, Carella C, Pucci-Minafra I: Tissue inhibitor of metalloprotease (TIMP)-1 and proliferative behaviour of clonal breast cancer cells. Breast Cancer Res Treat 54: 235–244, 1999

    PubMed  CAS  Google Scholar 

  105. Ritter LM, Garfield SH, Thorgeirsson UP: Tissue inhibitor of metalloproteinases-1 (TIMP-1) binds to the cell surface and translocates to the nucleus of human MCF-7 breast carcinoma cells. Biochem Biophys Res Commun 257: 494–499, 1999

    PubMed  CAS  Google Scholar 

  106. Li H, Nishio K, Yamashita K, Hayakawa T, Hoshino T: Cell cycle-dependent localization of tissue inhibitor of metalloproteinases-1 immunoreactivity in cultured human gingival fibroblasts. Nagoya J Med Sci 58: 133–142, 1995

    PubMed  CAS  Google Scholar 

  107. Zhao WQ, Li H, Yamashita K, Guo XK, Hoshino T, Yoshida S, Shinya T, Hayakawa T: Cell cycle-associated accumulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) in the nuclei of human gingival fibroblasts. J Cell Sci 111(Pt 9): 1147–1153, 1998

    PubMed  CAS  Google Scholar 

  108. Jiang Y, Wang M, Celiker MY, Liu YE, Sang QX, Goldberg ID, Shi YE: Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res 61: 2365–2370, 2001

    PubMed  CAS  Google Scholar 

  109. Berditchevski F: Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114: 4143–4151, 2001

    PubMed  CAS  Google Scholar 

  110. Hemler ME: Specific tetraspanin functions. J Cell Biol 155: 1103–1107, 2001

    PubMed  CAS  Google Scholar 

  111. Yunta M, Lazo PA: Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cell Signal 15: 559–564, 2003

    PubMed  CAS  Google Scholar 

  112. Tarrant JM, Robb L, van Spriel AB, Wright MD: Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 24: 610–617, 2003

    PubMed  CAS  Google Scholar 

  113. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ: Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273: 20121–20127, 1998

    PubMed  CAS  Google Scholar 

  114. Jang HI, Lee H: A decrease in the expression of CD63 tetraspanin protein elevates invasive potential of human melanoma cells. Exp Mol Med 35: 317–323, 2003

    PubMed  CAS  Google Scholar 

  115. Metzelaar MJ, Nieuwenhuis HK: Identity of Pltgp40 and lysomal integral membrane protein-CD63. Blood 78: 534–535, 1991

    PubMed  CAS  Google Scholar 

  116. Hildreth JE, Derr D, Azorsa DO: Characterization of a novel self-associating Mr 40,000 platelet glycoprotein. Blood 77: 121–132, 1991

    PubMed  CAS  Google Scholar 

  117. Hotta H, Ross AH, Huebner K, Isobe M, Wendeborn S, Chao MV, Ricciardi RP, Tsujimoto Y, Croce CM, Koprowski H: Molecular cloning and characterization of an antigen associated with early stages of melanoma tumor progression. Cancer Res 48: 2955–2962, 1988

    PubMed  CAS  Google Scholar 

  118. Beinert T, Munzing S, Possinger K, Krombach F: Increased expression of the tetraspanins CD53 and CD63 on apoptotic human neutrophils. J Leukoc Biol 67: 369–373, 2000

    PubMed  CAS  Google Scholar 

  119. Mahmudi-Azer S, Downey GP, Moqbel R: Translocation of the tetraspanin CD63 in association with human eosinophil mediator release. Blood 99: 4039–4047, 2002

    PubMed  CAS  Google Scholar 

  120. Knol EF, Mul FP, Jansen H, Calafat J, Roos D: Monitoring human basophil activation via CD63 monoclonal antibody 435. J Allergy Clin Immunol 88: 328–338, 1991

    PubMed  CAS  Google Scholar 

  121. Pfistershammer K, Majdic O, Stockl J, Zlabinger G, Kirchberger S, Steinberger P, Knapp W: CD63 as an activation-linked T cell costimulatory element. J Immunol 173: 6000–6008, 2004

    PubMed  CAS  Google Scholar 

  122. Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME: Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5: 11, 2005

    PubMed  Google Scholar 

  123. Nishiuchi R, Sanzen N, Nada S, Sumida Y, Wada Y, Okada M, Takagi J, Hasegawa H, Sekiguchi K: Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA 102: 1939–1944, 2005

    PubMed  CAS  Google Scholar 

  124. Tonoli H, Barrett JC: CD82 metastasis suppressor gene: a potential target for new therapeutics? Trends Mol Med 11: 563–570, 2005

    PubMed  CAS  Google Scholar 

  125. Sikora LK, Pinto A, Demetrick DJ, Dixon WT, Urbanski SJ, Temple W, Jerry LM: Characterization of a novel neuroglandular antigen (NGA) expressed on abnormal human melanocytes. Int J Cancer 39: 138–145, 1987

    PubMed  CAS  Google Scholar 

  126. Si Z, Hersey P: Expression of the neuroglandular antigen and analogues in melanoma. CD9 expression appears inversely related to metastatic potential of melanoma. Int J Cancer 54: 37–43, 1993

    PubMed  CAS  Google Scholar 

  127. Hotta H, Hara I, Miyamoto H, Homma M: Overexpression of the human melanoma-associated antigen ME491 partially suppresses in vivo malignant phenotypes of H-ras-transformed NIH3T3 cells in athymic nude mice. Melanoma Res 1: 125–132, 1991

    PubMed  CAS  Google Scholar 

  128. Radford KJ, Mallesch J, Hersey P: Suppression of human melanoma cell growth and metastasis by the melanoma-associated antigen CD63 (ME491). Int J Cancer 62: 631–635, 1995

    PubMed  CAS  Google Scholar 

  129. Sauer G, Kurzeder C, Grundmann R, Kreienberg R, Zeillinger R, Deissler H: Expression of tetraspanin adaptor proteins below defined threshold values is associated with in vitro invasiveness of mammary carcinoma cells. Oncol Rep 10: 405–410, 2003

    PubMed  CAS  Google Scholar 

  130. Uchida S, Shimada Y, Watanabe G, Li ZG, Hong T, Miyake M, Imamura M: Motility-related protein (MRP-1/CD9) and KAI1/CD82 expression inversely correlate with lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer 79: 1168–1173, 1999

    PubMed  CAS  Google Scholar 

  131. Arihiro K, Kaneko M, Fujii S, Inai K: Loss of CD9 with Expression of CD31 and VEGF in Breast Carcinoma, as Predictive Factors of Lymph Node Metastasis. Breast Cancer 5: 131–138, 1998

    PubMed  Google Scholar 

  132. Miyake M, Nakano K, Ieki Y, Adachi M, Huang CL, Itoi S, Koh T, Taki T: Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res 55: 4127–4131, 1995

    PubMed  CAS  Google Scholar 

  133. Miyake M, Nakano K, Itoi SI, Koh T, Taki T: Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res 56: 1244–1249, 1996

    PubMed  CAS  Google Scholar 

  134. Miyamoto S, Maruyama A, Okugawa K, Akazawa K, Baba H, Maehara Y, Mekada E: Loss of motility-related protein 1 (MRP1/CD9) and integrin alpha3 expression in endometrial cancers. Cancer 92: 542–548, 2001

    PubMed  CAS  Google Scholar 

  135. Mori M, Mimori K, Shiraishi T, Haraguchi M, Ueo H, Barnard GF, Akiyoshi T: Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin Cancer Res 4: 1507–1510, 1998

    PubMed  CAS  Google Scholar 

  136. Higashiyama M, Doi O, Kodama K, Yokouchi H, Adachi M, Huang CL, Taki T, Kasugai T, Ishiguro S, Nakamori S, Miyake M: Immunohistochemically detected expression of motility-related protein-1 (MRP-1/CD9) in lung adenocarcinoma and its relation to prognosis. Int J Cancer 74: 205–211, 1997

    PubMed  CAS  Google Scholar 

  137. Berditchevski F, Odintsova E: Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling. J Cell Biol 146: 477–492, 1999

    PubMed  CAS  Google Scholar 

  138. Kraft S, Fleming T, Billingsley JM, Lin SY, Jouvin MH, Storz P, Kinet JP: Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J Exp Med 201: 385–396, 2005

    PubMed  CAS  Google Scholar 

  139. Sugiura T, Berditchevski F: Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol 146: 1375–1389, 1999

    PubMed  CAS  Google Scholar 

  140. Brenner CA, Adler RR, Rappolee DA, Pedersen RA, Werb Z: Genes for extracellular-matrix-degrading metalloproteinases and their inhibitor, TIMP, are expressed during early mammalian development. Genes Dev 3: 848–859, 1989

    PubMed  CAS  Google Scholar 

  141. Salamonsen LA, Nagase H, Woolley DE: Matrix metalloproteinases and their tissue inhibitors at the ovine trophoblast-uterine interface. J Reprod Fertil Suppl 49: 29–37, 1995

    PubMed  CAS  Google Scholar 

  142. Hirata M, Sato T, Tsumagari M, Shimada A, Nakano H, Hashizume K, Ito A: Differential regulation of the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases by cytokines and growth factors in bovine endometrial stromal cells and trophoblast cell line BT-1 in vitro. Biol Reprod 68: 1276–1281, 2003

    PubMed  CAS  Google Scholar 

  143. Wang H, Wen Y, Mooney S, Li H, Behr B, Polan ML: Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human preimplantation embryos. Fertil Steril 80 Suppl 2: 736–742, 2003

    PubMed  Google Scholar 

  144. Bai SX, Wang YL, Qin L, Xiao ZJ, Herva R, Piao YS: Dynamic expression of matrix metalloproteinases (MMP-2, -9 and -14) and the tissue inhibitors of MMPs (TIMP-1, -2 and -3) at the implantation site during tubal pregnancy. Reproduction 129: 103–113, 2005

    PubMed  CAS  Google Scholar 

  145. Waterhouse P, Denhardt DT, Khokha R: Temporal expression of tissue inhibitors of metalloproteinases in mouse reproductive tissues during gestation. Mol Reprod Dev 35: 219–226, 1993

    PubMed  CAS  Google Scholar 

  146. Nothnick WB, Edwards DR, Leco KJ, Curry TE, Jr.: Expression and activity of ovarian tissue inhibitors of metalloproteinases during pseudopregnancy in the rat. Biol Reprod 53: 684–691, 1995

    PubMed  CAS  Google Scholar 

  147. Inderdeo DS, Edwards DR, Han VK, Khokha R: Temporal and spatial expression of tissue inhibitors of metalloproteinases during the natural ovulatory cycle of the mouse. Biol Reprod 55: 498–508, 1996

    PubMed  CAS  Google Scholar 

  148. Nothnick WB: Tissue inhibitor of metalloproteinase-1 (TIMP-1) deficient mice display reduced serum progesterone levels during corpus luteum development. Endocrinology 144: 5–8, 2003

    PubMed  CAS  Google Scholar 

  149. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, Soloway P, Itohara S, Werb Z: Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 162: 1123–1133, 2003

    PubMed  CAS  Google Scholar 

  150. Buisson-Legendre N, Emonard H, Bernard P, Hornebeck W: Relationship between cell-associated matrix metalloproteinase 9 and psoriatic keratinocyte growth. J Invest Dermatol 115: 213–218, 2000

    PubMed  CAS  Google Scholar 

  151. Olson MW, Toth M, Gervasi DC, Sado Y, Ninomiya Y, Fridman R: High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV. J Biol Chem 273: 10672–10681, 1998

    PubMed  CAS  Google Scholar 

  152. Deryugina EI, Zijlstra A, Partridge JJ, Kupriyanova TA, Madsen MA, Papagiannakopoulos T, Quigley JP: Unexpected effect of matrix metalloproteinase down-regulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res 65: 10959–10969, 2005

    PubMed  CAS  Google Scholar 

  153. Pozzi A, LeVine WF, Gardner HA: Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21: 272–281, 2002

    PubMed  CAS  Google Scholar 

  154. Hahn-Dantona E, Ruiz JF, Bornstein P, Strickland DK: The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem 276: 15498–15503, 2001

    PubMed  CAS  Google Scholar 

  155. Chen HC, Appeddu PA, Isoda H, Guan JL: Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271: 26329–26334, 1996

    PubMed  CAS  Google Scholar 

  156. Sonoda Y, Watanabe S, Matsumoto Y, Aizu-Yokota E, Kasahara T: FAK is the upstream signal protein of the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line. J Biol Chem 274: 10566–10570, 1999

    PubMed  CAS  Google Scholar 

  157. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241, 1997

    PubMed  CAS  Google Scholar 

  158. Scheid MP, Schubert KM, Duronio V: Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem 274: 31108–31113, 1999

    PubMed  CAS  Google Scholar 

  159. Kyriakis JM, Avruch J: Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18: 567–577, 1996

    PubMed  CAS  Google Scholar 

  160. Robinson MJ, Cobb MH: Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9: 180–186, 1997

    PubMed  CAS  Google Scholar 

  161. Murphy F, Waung J, Collins J, Arthur MJ, Nagase H, Mann D, Benyon RC, Iredale JP: N-Cadherin cleavage during activated hepatic stellate cell apoptosis is inhibited by tissue inhibitor of metalloproteinase-1. Comp Hepatol 3(Suppl 1): S8, 2004

    PubMed  Google Scholar 

  162. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Fukui H: Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology 36: 850–860, 2002

    PubMed  CAS  Google Scholar 

  163. Lin H, Chen X, Wang J, Yu Z: Inhibition of apoptosis in rat mesangial cells by tissue inhibitor of metalloproteinase-1. Kidney Int 62: 60–69, 2002

    PubMed  CAS  Google Scholar 

  164. Lambert E, Boudot C, Kadri Z, Soula-Rothhut M, Sowa ML, Mayeux P, Hornebeck W, Haye B, Petitfrere E: Tissue inhibitor of metalloproteinases-1 signalling pathway leading to erythroid cell survival. Biochem J 372: 767–774, 2003

    PubMed  CAS  Google Scholar 

  165. Chromek M, Tullus K, Lundahl J, Brauner A: Tissue inhibitor of metalloproteinase 1 activates normal human granulocytes, protects them from apoptosis, and blocks their transmigration during inflammation. Infect Immun 72: 82–88, 2004

    PubMed  CAS  Google Scholar 

  166. Vorotnikova E, Tries M, Braunhut S: Retinoids and TIMP1 prevent radiation-induced apoptosis of capillary endothelial cells. Radiat Res 161: 174–184, 2004

    PubMed  CAS  Google Scholar 

  167. Boulday G, Fitau J, Coupel S, Soulillou JP, Charreau B: Exogenous tissue inhibitor of metalloproteinase-1 promotes endothelial cell survival through activation of the phosphatidylinositol 3-kinase/Akt pathway. Ann N Y Acad Sci 1030: 28–36, 2004

    PubMed  CAS  Google Scholar 

  168. Yamazaki M, Akahane T, Buck T, Yoshiji H, Gomez DE, Schoeffner DJ, Okajima E, Harris SR, Bunce OR, Thorgeirsson SS, Thorgeirsson UP: Long-term exposure to elevated levels of circulating TIMP-1 but not mammary TIMP-1 suppresses growth of mammary carcinomas in transgenic mice. Carcinogenesis 25: 1735–1746, 2004

    PubMed  CAS  Google Scholar 

  169. Lim MS, Guedez L, Stetler-Stevenson WG, Stetler-Stevenson M: Tissue inhibitor of metalloproteinase-2 induces apoptosis in human T lymphocytes. Ann N Y Acad Sci 878: 522–523, 1999

    PubMed  CAS  Google Scholar 

  170. Barasch J, Yang J, Qiao J, Tempst P, Erdjument-Bromage H, Leung W, Oliver JA: Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest 103: 1299–1307, 1999

    PubMed  CAS  Google Scholar 

  171. Valente P, Fassina G, Melchiori A, Masiello L, Cilli M, Vacca A, Onisto M, Santi L, Stetler-Stevenson WG, Albini A: TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer 75: 246–253, 1998

    PubMed  CAS  Google Scholar 

  172. Majid MA, Smith VA, Easty DL, Baker AH, Newby AC: Adenovirus mediated gene delivery of tissue inhibitor of metalloproteinases-3 induces death in retinal pigment epithelial cells. Br J Ophthalmol 86: 97–101, 2002

    PubMed  Google Scholar 

  173. Majid MA, Smith VA, Easty DL, Baker AH, Newby AC: Sorsby's fundus dystrophy mutant tissue inhibitors of metalloproteinase-3 induce apoptosis of retinal pigment epithelial and MCF-7 cells. FEBS Lett 529: 281–285, 2002

    PubMed  CAS  Google Scholar 

  174. Bond M, Murphy G, Bennett MR, Newby AC, Baker AH: Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J Biol Chem 277: 13787–13795, 2002

    PubMed  CAS  Google Scholar 

  175. Baker AH, Zaltsman AB, George SJ, Newby AC: Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest 101: 1478–1487, 1998

    PubMed  CAS  Google Scholar 

  176. Ahonen M, Poukkula M, Baker AH, Kashiwagi M, Nagase H, Eriksson JE, Kahari VM: Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene 22: 2121–2134, 2003

    PubMed  CAS  Google Scholar 

  177. Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC: Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79: 1347–1355, 1999

    PubMed  CAS  Google Scholar 

  178. Yu XF, Yang C, Liang LH, Liu B, Zhou B, Li B, Han ZC: Inhibition of human leukemia xenograft in nude mice by adenovirus-mediated tissue inhibitor of metalloproteinase-3. Leukemia 2005

  179. Lamfers ML, Gianni D, Tung CH, Idema S, Schagen FH, Carette JE, Quax PH, Van Beusechem VW, Vandertop WP, Dirven CM, Chiocca EA, Gerritsen WR: Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res 65: 9398–9405, 2005

    PubMed  CAS  Google Scholar 

  180. Fata JE, Leco KJ, Voura EB, Yu HY, Waterhouse P, Murphy G, Moorehead RA, Khokha R: Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest 108: 831–841, 2001

    PubMed  CAS  Google Scholar 

  181. Tummalapalli CM, Heath BJ, Tyagi SC: Tissue inhibitor of metalloproteinase-4 instigates apoptosis in transformed cardiac fibroblasts. J Cell Biochem 80: 512–521, 2001

    PubMed  CAS  Google Scholar 

  182. Guo YH, Gao W, Li Q, Li PF, Yao PY, Chen K: Tissue inhibitor of metalloproteinases-4 suppresses vascular smooth muscle cell migration and induces cell apoptosis. Life Sci 75: 2483–2493, 2004

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeong-Reh Choi Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirco, R., Liu, XW., Jung, KK. et al. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25, 99–113 (2006). https://doi.org/10.1007/s10555-006-7893-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-7893-x

Keywords

Navigation