Skip to main content
Log in

Patterns of vascular response immediately after passive mobilization in patients with sepsis: an observational transversal study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Sepsis is a serious organ dysfunction leading to endothelial damage in critical patients. Physiologically, there is an augment of vascular diameter in response to increased vascular blood flow and shear stress stimulus. However, the pattern of vascular response in face of passive mobilization (PM), an early mobilization physical strategy, has not yet been explored in patients with sepsis. To explore patterns of vascular response to PM and associations with clinical and cardiovascular profile in patients with sepsis. Cross-sectional, single-arm study. Thirty-two patients diagnosed with sepsis were enrolled. Vascular response was assessed by flow-mediated dilation (FMD) using brachial artery ultrasound, before and after PM. The PM (to assess the response pattern) and SR (shear rate) were also calculated. PM protocol consisted of knees, hips, wrists, elbows, shoulders, dorsiflexion/plantar flexion movements 3 × 10 repetitions each (15 min). Arterial stiffness was assessed by Sphygmocor®, by analyzing the morphology and pulse wave velocity. Cardiac autonomic modulation (CAM) was assessed by analyzing heart rate variability indexes (mean HR, RMSSD, LF, HF, ApEn, SampEn, DFA). Different vascular responses were observed after PM: (1) increased vascular diameter (responders) (n = 13, %FMD = 11.89 ± 5.64) and (2) reduced vascular diameter (non-responders) (n = 19, %FMD= −7.42 ± 6.44). Responders presented a higher non-linear DFA2 index (p = 0.02). There was a positive association between FMD and DFA (r = 0.529; p = 0.03); FMD and SampEn (r = 0.633; p < 0.01). A negative association was identified between FMD and LF (Hz) (r= −0.680; p < 0.01) and IL-6 (r= −0.469; p = 0.037) and SR and CRP (r= −0.427; p = 0.03).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vender JS, Szokol JW, Murphy GS, Nitsun M (2004) Sedation, analgesia, and neuromuscular blockade in sepsis: An evidence-based review. Crit Care Med 32(11):S554–S561. https://doi.org/10.1097/01.CCM.0000145907.86298.12

    Article  PubMed  Google Scholar 

  3. Grunow JJ, Goll M, Carbon NM, Liebl ME, Weber-Carstens S, Wollersheim T (2019) Differential contractile response of critically ill patients to neuromuscular electrical stimulation. Critical Care 23(1):1–12. https://doi.org/10.1186/s13054-019-2540-4

    Article  Google Scholar 

  4. Conceição MS, Ugrinowitsch C 2019 Exercise with blood flow restriction: an effective alternative for the non-pharmaceutical treatment for muscle wasting. Journal of Cachexia, Sarcopenia and Muscle. Wiley Blackwell, pp 257–262. https://doi.org/10.1002/jcsm.12397

  5. Koo NYK, Choong K, Fan E (2011) Prioritizing rehabilitation strategies in the care of the critically Ill. Critical Care Rounds 8(4):1:7

    Google Scholar 

  6. Trinity JD, Richardson RS (2019) Physiological Impact and Clinical Relevance of Passive Exercise/Movement. Sports Medicine. Springer International Publishing 49(9):1365–1381. https://doi.org/10.1007/s40279-019-01146-1

    Article  Google Scholar 

  7. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascón GA et al (2016) The endothelium in sepsis. Shock Lippincott Williams Wilkins 45(3):259–270. https://doi.org/10.1097/SHK.0000000000000473

    Article  CAS  Google Scholar 

  8. Nelson AD, Rossman MJ, Witman MA, Barrett-O’Keefe Z, Groot HJ, Garten RS et al (2016) Nitric oxide-mediated vascular function in sepsis using passive leg movement as a novel assessment: A cross-sectional study. J Appl Physiol 120:991–999. https://doi.org/10.1152/japplphysiol.00961.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joffre J, Hellman J, Ince C, Ait-Oufella H (2020) Endothelial responses in sepsis. American Journal of Respiratory Critical Care Medicine American Thoracic Society 202(3):361–370. https://doi.org/10.1164/rccm.201910-1911TR

    Article  CAS  Google Scholar 

  10. Phillips SA et al (2017) Exploring Vascular Function Biomarkers Implications for Rehabilitation. Braz J Cardiovasc Surg. 32(2):125–135. https://doi.org/10.21470/1678-9741-2016-0085

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hsiao SY et al (2018) Concentration and value of endocan on outcome in adult patients after severe sepsis. Clinica Chimica Acta 483:275–280. https://doi.org/10.1016/j.cca.2018.05.007

    Article  CAS  Google Scholar 

  12. Kung CT et al (2013) Serum adhesion molecules as predictors of bacteremia in adult severe sepsis patients at the emergency department. Clin Chim Acta 421(5):116–120. https://doi.org/10.1016/j.cca.2013.02.023

    Article  CAS  PubMed  Google Scholar 

  13. Bruno RM, Ghiadoni L, Seravalle G, Dell’oro R, Taddei S, Grassi G (2012) Sympathetic regulation of vascular function in health and disease. Front Physiol 3:284. https://doi.org/10.3389/fphys.2012.00284

    Article  PubMed  PubMed Central  Google Scholar 

  14. Millar PJ, Notarius CF, Haruki N, Floras JS (2019) Heart failure–specific relationship between muscle sympathetic nerve activity and aortic wave reflection. J Card Fail 25:404–408. https://doi.org/10.1016/j.cardfail.2019. 03.005

    Article  PubMed  Google Scholar 

  15. Carrara M, Herpain A, Baselli G, Ferrario M (2020) Vascular Decoupling in Septic Shock: The Combined Role of Autonomic Nervous System, Arterial Stiffness, and Peripheral Vascular Tone. Front Physiol 11:594. https://doi.org/10.3389/fphys.2020.00594

    Article  PubMed  PubMed Central  Google Scholar 

  16. Singer M et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA - J Am Med Assoc 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  Google Scholar 

  17. Pinheiro TT, de Freitas FGR, Coimbra KTF, Mendez VMF, Rossetti HB, Talma PV et al (2017) Short-term effects of passive mobilization on the sublingual microcirculation and on the systemic circulation in patients with septic shock. Ann Intensive Care. (1):95. https://doi.org/10.1186/s13613-017-0318-x

  18. Hallmark R, Patrie JT, Liu Z, Gaesser GA, Barrett EJ, Weltman A (2014) The effect of exercise intensity on endothelial function in physically inactive lean and obese adults. PLoS One 9(1):e85450. https://doi.org/10.1371/journal.pone.0085450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thijssen DHJ et al (2019) Expert consensus and evidence-based recommendations for the assessment of flowmediated dilation in humans. Eur Heart J 40: 2534–2547. https://doi.org/10.1093/eurheartj/ehz350

    Article  PubMed  Google Scholar 

  20. Radespiel-Troger M, Rauh R, Mahlke C, Gottschalk T, Muck-Weymann M (2003) Agreement of two different methods for measurement of heart rate variability. Clin Auton Res 13:99–102

    Article  PubMed  Google Scholar 

  21. Vanderlei LCM et al. (2009) Noções básicas da variabilidade da FC e sua aplicabilidade clínica. Revista Brasileira de Cirurgia Cardiovascular, v. 24, n. 2, p. 205–217

  22. Doupis J, Papanas N, Cohen A, McFarlan L, Horton E (2016) Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness. Open Cardiovasc Med J 10:188–195. https://doi.org/10.2174/1874192401610010188

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dantas CM et al (2012) Influência da mobilização precoce na força muscular periférica e respiratória em pacientes críticos. RevBrasTerIntensiva v 24(2):173–178

    Google Scholar 

  24. Langer D et al (2009) Early exercise in critically ill patients enhances short-term functional recovery*. Crit Care Med v 37:9, p. 2499–2505 n.

    Article  Google Scholar 

  25. Munro BH (2001) Correlation. In: Munro BH. Statistical methods for health care research, 4ª. Lippincott, ed. Philadelphia, pp 223–243

    Google Scholar 

  26. Becker L et al (2012) Endothelial dysfunction assessed by brachial artery ultrasound in severe sepsis and septic shock. J Critical Care. 27(3): 316.e9-316.https://doi.org/10.1016/j.jcrc.2011.08.002

  27. Hoiland RL, Tremblay JC, Stacey BS, Coombs GB, Nowak-Flück D, Tymko MM, Patrician A, Stembridge M, Howe CA, Bailey DM, Green DJ, MacLeod DB, Ainslie PN (2020) Acute reductions in haematocrit increase flow-mediated dilatation independent of resting nitric oxide bioavailability in humans. J Physiol 598(19):4225–4236. https://doi.org/10.1113/JP280141

    Article  CAS  PubMed  Google Scholar 

  28. Dawson EA, Green DJ, Cable NT, Thijssen DH (2013) Effects of acute exercise on flow-mediated dilatation in healthy humans. J Appl Physiol (1985) 115(11):1589–1598. https://doi.org/10.1152/japplphysiol.00450.2013

    Article  Google Scholar 

  29. Ichinose M, Nakabayashi M, Ono Y (2018) Sympathoexcitation constrains vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. Am J Physiol Heart Circ Physiol. 1;315(2):H242-H253. https://doi.org/10.1152/ajpheart.00010.2018. Epub 2018 Apr 13. PMID: 29652542

  30. Hein TW, Singh U, Vasquez-Vivar J, Devaraj S, Kuo L, Jialal I (2009) Human C-reactive protein induces endothelial dysfunction and uncoupling of eNOS in vivo. Atherosclerosis 206(1):61–68. https://doi.org/10.1016/j.atherosclerosis.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwedler SB, Kuhlencordt PJ, Ponnuswamy PP et al (2007) Native C-reactive protein induces endothelial dysfunction in ApoE-/- mice: implications for iNOS and reactive oxygen species. Atherosclerosis 195(2):e76. https://doi.org/10.1016/j.atherosclerosis.2007.06.013

    Article  CAS  PubMed  Google Scholar 

  32. Ramos AM, Pellanda LC, Gus I, Portal VL (2009) Inflammatory markers of cardiovascular disease in the elderly. Arq Bras Cardiol 92(3):221–228. https://doi.org/10.1590/s0066-782X2009000300012

    Article  PubMed  Google Scholar 

  33. Teixeira BC, Lopes AL, Macedo RCO, Correa CS, Ramis TR, Ribeiro JL, Reischak-Oliveira A (2014) Inflammatory markers, endothelial function and cardiovascular risk. J vasc bras 13(2):108:115. https://doi.org/10.1590/jvb.2014.054

    Article  Google Scholar 

  34. Breder CD, Tsujimoto M, Terano Y, Scott DW, Saper CB (1993) Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine central nervous system. J Comp Neurol 22(4):543–567 337(

    Article  Google Scholar 

  35. Wexler O, Morgan MA, Gough MS, Steinmetz SD, Mack CM, Darling DC, Doolin KP, Apostolakos MJ, Graves BT, Frampton MW, Chen X, Pietropaoli AP (2012) Brachial artery reactivity in patients with severe sepsis: an observational study. Crit Care 16(2):38. https://doi.org/10.1186/cc11223

    Article  Google Scholar 

  36. de Souza AC, Cisternas JR, de Abreu LC, Roque AL, Monteiro CB, Adami F, Vanderlei LC, Sousa FH, Ferreira LL, Valenti VE (2014) Fractal correlation property of heart rate variability in response to the postural change maneuver in healthy women. Int Arch Med 7(1):1–7. https://doi.org/10.1186/1755-7682-7-25

    Article  Google Scholar 

  37. Bonjorno Junior JC, Caruso FR, Mendes RG, da Silva TR, Biazon TMPC, Rangel F, Phillips SA, Arena R, Borghi-Silva A (2019) Noninvasive measurements of hemodynamic, autonomic and endothelial function as predictors of mortality in sepsis: A prospective cohort study. PLoS One. 11;14(3). https://doi.org/10.1371/journal.pone.0213239

  38. Fiskum C, Andersen TG, Bornas X, Aslaksen PM, Flaten MA, Jacobsen K (2018) Non-linear Heart Rate Variability as a Discriminator of Internalizing Psychopathology and Negative Affect in Children With Internalizing Problems and Healthy Controls. Front Physiol 9:561. https://doi.org/10.3389/fphys.2018.00561

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the professionals from Fraternity of the Santa Casa Misericordia Hospital of São Carlos for their support with data collection.

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil [grant number 428073/2016-6], financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001 and FAPESP [grant number 2015/26501-1].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Débora Mayumi de Oliveira Kawakami, Tamara Rodrigues da Silva Destro, Thaís Marina Pires de Campos Biazon, Naiara Molina Garcia and Flávia Cristina Rossi Caruso Bonjorno. The first draft of the manuscript was written by Débora Mayumi de Oliveira Kawakami, José Carlos Bonjorno-Junior, Audrey Borgh-Silva and Renata Gonçalves Mendes and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Renata Gonçalves Mendes.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee [University of Sao Carlos (CAAE: 58405916.4.0000.5504, protocol number: 2.363.397)]. and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakami, D.M.d.O., Bonjorno-Junior, J.C., da Silva Destro, T.R. et al. Patterns of vascular response immediately after passive mobilization in patients with sepsis: an observational transversal study. Int J Cardiovasc Imaging 38, 297–308 (2022). https://doi.org/10.1007/s10554-021-02402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02402-0

Keywords

Navigation