Skip to main content

Advertisement

Log in

Pulmonary hypertension and right ventricular dysfunction in patients with left to right shunt coronary artery fistula: evaluation with cardiac CT

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

In this study, we aimed to evaluate whether patients with left to right shunt coronary artery fistula (LRSCAF) are predisposed to developing pulmonary hypertension and right ventricular dysfunction compared with healthy individuals. The value of cardiac CT findings in determining the necessity of intervention for these patients was investigated. We retrospectively studied 19 patients with LRSCAF and 19 healthy patients. Several parameters were observed on cardiac CT by two radiologists, including pulmonary trunk diameter (PA diameter), right ventricular diameter (RVD), left ventricular diameter (LVD), RVD/LVD ratio, septal bowing and CT score of right ventricular dysfunction (CSRVD). Data from both groups were compared. The inter- and intra-observer variabilities and correlations were examined. The disease group was further divided into intervention (n = 9) and non-intervention (n = 10) groups, and their data were compared. All cardiac CT findings showed significant intra- and inter-observer correlation without significant variability. Mann–Whitney U tests and χ2 analysis showed that PA diameter, RVD/LVD ratio acquired from two observers, and CSRVD were higher in the disease group than in the control group (all P values < 0.05 for χ2 and almost all P values < 0.05 for Mann–Whitney U). The RVD/LVD ratio and CSRVD were higher in the intervention group than in the non-intervention group (all P values < 0.05). Receiver operating curve analysis identified RVD/LVD = 1.036 and CSRVD = 3.5 as the best cut-off values to determine the necessity of further intervention. Patients with LRSCAF are more predisposed to pulmonary hypertension and right ventricular dysfunction compared with the normal population. RVD/LVD > 1.0 and CSRVD ≥ 4.0 may determine the necessity of intervention for patients with LRSCAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen CC, Hwang B, Hsiung MC, Chiang BN, Meng LC, Wang DJ, Wang SP (1984) Recognition of coronary arterial fistula by Doppler 2-dimensional echocardiography. Am J Cardiol 53(2):392–394

    Article  CAS  PubMed  Google Scholar 

  2. Krause W (1865) Über den Ursprung einer akzessorischen a. coronaria aus der a. pulmonalis. Z Ratl Med 24:225

    Google Scholar 

  3. Dodge-Khatami A, Mavroudis C, Backer CL (2000) Congenital heart surgery nomenclature and database project: anomalies of the coronary arteries. Ann Thorac Surg 69(4 Suppl):S270–S297

    Article  CAS  PubMed  Google Scholar 

  4. Schumacher G, Roithmaier A, Lorenz HP, Meisner H, Sauer U, Muller KD, Sebening F, Buhlmeyer K (1997) Congenital coronary artery fistula in infancy and childhood: diagnostic and therapeutic aspects. Thorac Cardiovasc Surg 45(6):287–294

    Article  CAS  PubMed  Google Scholar 

  5. Wang NK, Hsieh LY, Shen CT, Lin YM (2002) Coronary arteriovenous fistula in pediatric patients: a 17-year institutional experience. J Formos Med Assoc 101(3):177–182

    PubMed  Google Scholar 

  6. Lin FC, Chang HJ, Chern MS, Wen MS, Yeh SJ, Wu D (1995) Multiplane transesophageal echocardiography in the diagnosis of congenital coronary artery fistula. Am Heart J 130(6):1236–1244

    Article  CAS  PubMed  Google Scholar 

  7. Balanescu S, Sangiorgi G, Castelvecchio S, Medda M, Inglese L (2001) Coronary artery fistulas: clinical consequences and methods of closure. A literature review. Ital Heart J 2(9):669–676

    CAS  PubMed  Google Scholar 

  8. Zenooz NA, Habibi R, Mammen L, Finn JP, Gilkeson RC (2009) Coronary artery fistulas: CT findings. Radiographics 29(3):781–789

    Article  PubMed  Google Scholar 

  9. Okwuosa TM, Gundeck EL, Ward RP (2006) Coronary to pulmonary artery fistula–diagnosis by transesophageal echocardiography. Echocardiography 23(1):62–64

    Article  PubMed  Google Scholar 

  10. Tousoulis D, Brilli S, Aggelli K, Tentolouris C, Stefanadis C, Toutouzas K, Frogoudaki A, Toutouzas P (2001) Left main coronary artery to left atrial fistula causing mild pulmonary hypertension. Circulation 103(15):2028–2029

    Article  CAS  PubMed  Google Scholar 

  11. Dewhurst NG, Colledge NR, Miller HC (1987) Severe pulmonary hypertension and multiple left coronary arterial fistulas in association with congenital hepatic fibrosis. Br Heart J 58(5):525–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akdeniz B, Yilmaz E, Hazan E, Ozpelit E (2012) Multiple coronary artery-pulmonary artery fistulas in patients with chronic thromboembolic pulmonary hypertension. Anadolu Kardiyol Derg 12(2):E6–E7

    PubMed  Google Scholar 

  13. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, del Nido P, Fasules JW, Graham TP Jr, Hijazi ZM, Hunt SA, King ME, Landzberg MJ, Miner PD, Radford MJ, Walsh EP, Webb GD, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Buller CE, Creager MA, Ettinger SM, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura RA, Page RL, Riegel B, Tarkington LG, Yancy CW (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 52(23):e143–e263

    Article  PubMed  Google Scholar 

  14. Lu MT, Demehri S, Cai T, Parast L, Hunsaker AR, Goldhaber SZ, Rybicki FJ (2012) Axial and reformatted four-chamber right ventricle-to-left ventricle diameter ratios on pulmonary CT angiography as predictors of death after acute pulmonary embolism. AJR Am J Roentgenol 198(6):1353–1360

    Article  PubMed  Google Scholar 

  15. Contractor S, Maldjian PD, Sharma VK, Gor DM (2002) Role of helical CT in detecting right ventricular dysfunction secondary to acute pulmonary embolism. J Comput Assist Tomogr 26(4):587–591

    Article  PubMed  Google Scholar 

  16. Collomb D, Paramelle PJ, Calaque O, Bosson JL, Vanzetto G, Barnoud D, Pison C, Coulomb M, Ferretti G (2003) Severity assessment of acute pulmonary embolism: evaluation using helical CT. Eur Radiol 13(7):1508–1514

    Article  CAS  PubMed  Google Scholar 

  17. Mansencal N, Joseph T, Vieillard-Baron A, Langlois S, El Hajjam M, Qanadli SD, Lacombe P, Jardin F, Dubourg O (2005) Diagnosis of right ventricular dysfunction in acute pulmonary embolism using helical computed tomography. Am J Cardiol 95(10):1260–1263

    Article  PubMed  Google Scholar 

  18. Lim KE, Chan CY, Chu PH, Hsu YY, Hsu WC (2005) Right ventricular dysfunction secondary to acute massive pulmonary embolism detected by helical computed tomography pulmonary angiography. Clin Imaging 29(1):16–21

    Article  PubMed  Google Scholar 

  19. Schoepf UJ, Kucher N, Kipfmueller F, Quiroz R, Costello P, Goldhaber SZ (2004) Right ventricular enlargement on chest computed tomography: a predictor of early death in acute pulmonary embolism. Circulation 110(20):3276–3280

    Article  PubMed  Google Scholar 

  20. Lu MT, Cai T, Ersoy H, Whitmore AG, Quiroz R, Goldhaber SZ, Rybicki FJ (2008) Interval increase in right-left ventricular diameter ratios at CT as a predictor of 30-day mortality after acute pulmonary embolism: initial experience. Radiology 246(1):281–287

    Article  PubMed  Google Scholar 

  21. Reid JH, Murchison JT (1998) Acute right ventricular dilatation: a new helical CT sign of massive pulmonary embolism. Clin Radiol 53(9):694–698

    Article  CAS  PubMed  Google Scholar 

  22. Araoz PA, Gotway MB, Harrington JR, Harmsen WS, Mandrekar JN (2007) Pulmonary embolism: prognostic CT findings. Radiology 242(3):889–897

    Article  PubMed  Google Scholar 

  23. Ghaye B, Ghuysen A, Willems V, Lambermont B, Gerard P, D’Orio V, Gevenois PA, Dondelinger RF (2006) Severe pulmonary embolism: pulmonary artery clot load scores and cardiovascular parameters as predictors of mortality. Radiology 239(3):884–891

    Article  PubMed  Google Scholar 

  24. Dogan H, Kroft LJ, Huisman MV, van der Geest RJ, de Roos A (2007) Right ventricular function in patients with acute pulmonary embolism: analysis with electrocardiography-synchronized multi-detector row CT. Radiology 242(1):78–84

    Article  PubMed  Google Scholar 

  25. Aviram G, Rogowski O, Gotler Y, Bendler A, Steinvil A, Goldin Y, Graif M, Berliner S (2008) Real-time risk stratification of patients with acute pulmonary embolism by grading the reflux of contrast into the inferior vena cava on computerized tomographic pulmonary angiography. J Thromb Haemost 6(9):1488–1493

    Article  CAS  PubMed  Google Scholar 

  26. Quiroz R, Kucher N, Schoepf UJ, Kipfmueller F, Solomon SD, Costello P, Goldhaber SZ (2004) Right ventricular enlargement on chest computed tomography: prognostic role in acute pulmonary embolism. Circulation 109(20):2401–2404

    Article  PubMed  Google Scholar 

  27. Kang DK, Thilo C, Schoepf UJ, Barraza JM Jr, Nance JW Jr, Bastarrika G, Abro JA, Ravenel JG, Costello P, Goldhaber SZ (2011) CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging 4(8):841–849

    Article  PubMed  Google Scholar 

  28. van der Meer RW, Pattynama PM, van Strijen MJ, van den Berg-Huijsmans AA, Hartmann IJ, Putter H, de Roos A, Huisman MV (2005) Right ventricular dysfunction and pulmonary obstruction index at helical CT: prediction of clinical outcome during 3-month follow-up in patients with acute pulmonary embolism. Radiology 235(3):798–803

    Article  PubMed  Google Scholar 

  29. Henzler T, Roeger S, Meyer M, Schoepf UJ, Nance JW Jr, Haghi D, Kaminski WE, Neumaier M, Schoenberg SO, Fink C (2012) Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. Eur Respir J 39(4):919–926

    Article  CAS  PubMed  Google Scholar 

  30. Furlan A, Aghayev A, Chang CC, Patil A, Jeon KN, Park B, Fetzer DT, Saul M, Roberts MS, Bae KT (2012) Short-term mortality in acute pulmonary embolism: clot burden and signs of right heart dysfunction at CT pulmonary angiography. Radiology 265(1):283–293

    Article  PubMed  PubMed Central  Google Scholar 

  31. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J, Harrington RA, Anderson JL, Bates ER, Bridges CR, Eisenberg MJ, Ferrari VA, Grines CL, Hlatky MA, Jacobs AK, Kaul S, Lichtenberg RC, Lindner JR, Moliterno DJ, Mukherjee D, Pohost GM, Rosenson RS, Schofield RS, Shubrooks SJ, Stein JH, Tracy CM, Weitz HH, Wesley DJ (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Associati. Circulation 119(16):2250–2294

    Article  PubMed  Google Scholar 

  32. Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, Nieman K, Pontone G, Raff GL (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8(5):342–358

    Article  PubMed  Google Scholar 

  33. Ruzsics B, Gebregziabher M, Lee H, Brothers RL, Allmendinger T, Vogt S, Costello P, Schoepf UJ (2009) Coronary CT angiography: automatic cardiac-phase selection for image reconstruction. Eur Radiol 19(8):1906–1913

    Article  PubMed  Google Scholar 

  34. Kuriyama K, Gamsu G, Stern RG, Cann CE, Herfkens RJ, Brundage BH (1984) CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol 19(1):16–22

    Article  CAS  PubMed  Google Scholar 

  35. Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, Lessick J, Vembar M, Weese J (2011) Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 15(6):863–876

    Article  PubMed  Google Scholar 

  36. Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, Weinsaft JW, Shaw LJ, Berman DS, Callister TQ, Min JK (2008) Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. JACC Cardiovasc Imaging 1(6):782–786

    Article  PubMed  Google Scholar 

  37. Dupont MV, Dragean CA, Coche EE (2011) Right ventricle function assessment by MDCT. AJR Am J Roentgenol 196(1):77–86

    Article  PubMed  Google Scholar 

  38. Kumamaru KK, Lu MT, Ghaderi Niri S, Hunsaker AR (2013) Right ventricular enlargement in acute pulmonary embolism derived from CT pulmonary angiography. Int J Cardiovasc Imaging 29(3):705–708

    Article  PubMed  Google Scholar 

  39. Kumamaru KK, Hunsaker AR, Bedayat A, Soga S, Signorelli J, Adams K, Wake N, Lu MT, Rybicki FJ (2012) Subjective assessment of right ventricle enlargement from computed tomography pulmonary angiography images. Int J Cardiovasc Imaging 28(4):965–973

    Article  PubMed  Google Scholar 

  40. Weininger M (2012) Subjective assessment of right ventricle enlargement from computed tomography pulmonary angiography images. Int J Cardiovasc Imaging 28(4):975–977

    Article  PubMed  Google Scholar 

  41. Kang DK, Ramos-Duran L, Schoepf UJ, Armstrong AM, Abro JA, Ravenel JG, Thilo C (2010) Reproducibility of CT signs of right ventricular dysfunction in acute pulmonary embolism. AJR Am J Roentgenol 194(6):1500–1506

    Article  PubMed  Google Scholar 

  42. Saboo SS, Juan YH, Khandelwal A, George E, Steigner ML, Landzberg M, Rybicki FJ (2014) MDCT of congenital coronary artery fistulas. AJR Am J Roentgenol 203(3):W244–W252

    Article  PubMed  Google Scholar 

  43. Levin DC, Fellows KE, Abrams HL (1978) Hemodynamically significant primary anomalies of the coronary arteries. Angiographic aspects. Circulation 58(1):25–34

    Article  CAS  PubMed  Google Scholar 

  44. Fernandes ED, Kadivar H, Hallman GL, Reul GJ, Ott DA, Cooley DA (1992) Congenital malformations of the coronary arteries: the Texas Heart Institute experience. Ann Thorac Surg 54(4):732–740

    Article  CAS  PubMed  Google Scholar 

  45. Lim JJ, Jung JI, Lee BY, Lee HG (2014) Prevalence and types of coronary artery fistulas detected with coronary CT angiography. AJR Am J Roentgenol 203(3):W237–W243

    Article  PubMed  Google Scholar 

  46. Park JR, Chang SA, Jang SY, No HJ, Park SJ, Choi SH, Park SW, Kim H, Choe YH, Lee KS, Oh JK, Kim DK (2012) Evaluation of right ventricular dysfunction and prediction of clinical outcomes in acute pulmonary embolism by chest computed tomography: comparisons with echocardiography. Int J Cardiovasc Imaging 28(4):979–987

    Article  PubMed  Google Scholar 

  47. Nural MS, Elmali M, Findik S, Yapici O, Uzun O, Sunter AT, Erkan L (2009) Computed tomographic pulmonary angiography in the assessment of severity of acute pulmonary embolism and right ventricular dysfunction. Acta Radiol 50(6):629–637

    Article  CAS  PubMed  Google Scholar 

  48. Kacmaz F, Ozbulbul NI, Alyan O, Maden O, Demir AD, Balbay Y, Erbay AR, Atak R, Senen K, Olcer T, Ilkay E (2008) Imaging of coronary artery anomalies: the role of multidetector computed tomography. Coron Artery Dis 19(3):203–209

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan, ROC. This study is partially supported by the Wong Vung-Hau Radiology Foundation, Taipei, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Wa Chan.

Ethics declarations

Conflict of interest

All of the authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YP., Chan, SW., Chai, JW. et al. Pulmonary hypertension and right ventricular dysfunction in patients with left to right shunt coronary artery fistula: evaluation with cardiac CT. Int J Cardiovasc Imaging 32 (Suppl 1), 91–104 (2016). https://doi.org/10.1007/s10554-016-0868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0868-2

Keywords

Navigation