Skip to main content

Advertisement

Log in

Correction of lumen contrast-enhancement influence on non-calcified coronary atherosclerotic plaque quantification on CT

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Lumen contrast-enhancement influences non-calcified atherosclerotic plaque Hounsfield-unit (HU) values in computed tomography (CT). This study aimed to construct and validate an algorithm to correct for this influence. Three coronary vessel phantoms with 1, 2, and 4 mm circular hollow lumina; with normal and plaque-infested walls were scanned simultaneously in oil using a dual-source CT scanner. Scanning was repeated as the lumina were alternately filled with water and four contrast solutions (100–400 HU, at 100 HU intervals). Images were reconstructed at 0.4 mm x–y pixel size. Pixel-by-pixel comparisons of contrast-enhanced and non-contrast-enhanced images confirmed exponential declining patterns in lumen contrast-enhancement influence on wall HU-values from the lumen border (y = Ae−λx + c). The median difference of the inside and outside 2-pixel radius part of the contrast-enhanced coronary phantom wall to the reference (non-contrast-enhanced images) was 45 and 2 HU, respectively. Based on the lumen contrast-enhancement influence patterns, a generalized correction algorithm was formulated. Application of the generalized correction algorithm to the inside 2-pixel radius part of the wall reduced the median difference to the reference to 4 HU. In conclusion, lumen contrast-enhancement influence on the vessel wall can be defined by an exponential approximation, allowing correction of the CT density of the vessel wall closest to the lumen. With this correction, a more accurate determination of vessel wall composition can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heron MP, Smith BL (2007) Deaths: leading causes for 2003. Natl Vital Stat Rep 55:1–92

    Google Scholar 

  2. Korosoglou G, Mueller D, Lehrke S et al (2010) Quantitative assessment of stenosis severity and atherosclerotic plaque composition using 256-slice computed tomography. Eur Radiol 20:1841–1850

    Article  PubMed  Google Scholar 

  3. Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  4. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  5. Oudkerk M, Stillman AE, Halliburton SS et al (2008) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Int J Cardiovasc Imaging 24:645–671

    Article  PubMed Central  PubMed  Google Scholar 

  6. Oudkerk M, Stillman AE, Halliburton SS et al (2008) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Eur Radiol 18:2785–2807

    Article  PubMed  Google Scholar 

  7. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:13–18

    Article  Google Scholar 

  8. Nasu K, Tsuchikane E, Katoh O et al (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47:2405–2412

    Article  PubMed  Google Scholar 

  9. Nishimura RA, Edwards WD, Warnes CA et al (1990) Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol 16:145–154

    Article  CAS  PubMed  Google Scholar 

  10. Brodoefel H, Reimann A, Heuschmid M et al (2008) Characterization of coronary atherosclerosis by dual-source computed tomography and HU-based color mapping: a pilot study. Eur Radiol 18:2466–2474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Leber AW, Knez A, Becker A et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques A comparative study with intracoronary ultrasound. J Am Coll Cardiol 43:1241–1247

    Article  PubMed  Google Scholar 

  12. Motoyama S, Kondo T, Anno H et al (2007) Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging: comparison with intravascular ultrasound. Circ J 71:363–366

    Article  PubMed  Google Scholar 

  13. Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37:1430–1435

    Article  CAS  PubMed  Google Scholar 

  14. Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431

    Article  PubMed  Google Scholar 

  15. Ferencik M, Chan RC, Achenbach S et al (2006) Arterial wall imaging: evaluation with 16-section multidetector CT in blood vessel phantoms and ex vivo coronary arteries. Radiology 240:708–716

    Article  PubMed  Google Scholar 

  16. Halliburton SS, Schoenhagen P, Nair A et al (2006) Contrast enhancement of coronary atherosclerotic plaque: a high-resolution, multidetector-row computed tomography study of pressure-perfused, human ex vivo coronary arteries. Coron Artery Dis 17:553–560

    Article  PubMed  Google Scholar 

  17. Horiguchi J, Fujioka C, Kiguchi M et al (2007) Soft and intermediate plaques in coronary arteries: how accurately can we measure CT attenuation using 64-MDCT? Am J Roentgenol 189:981–988

    Article  Google Scholar 

  18. Suzuki S, Furui S, Kuwahara S et al (2006) Accuracy of attenuation measurement of vascular wall in vitro on computed tomography angiography: effect of wall thickness, density of contrast medium, and measurement point. Invest Radiol 41:510–515

    Article  PubMed  Google Scholar 

  19. Kristanto W, van Ooijen P, Greuter MJ et al (2013) Non-calcified coronary atherosclerotic plaque visualization on CT: effects of contrast-enhancement and lipid-content fractions. Int J Cardiovasc Imaging 29:1137–1148

    Article  PubMed  Google Scholar 

  20. Kristanto W, van Ooijen PM, Dikkers R et al (2010) Quantitative image analysis for the detection of motion artefacts in coronary artery computed tomography. Int J Cardiovasc Imaging 26:77–87

    Article  PubMed Central  PubMed  Google Scholar 

  21. Brodoefel H, Burgstahler C, Sabir A et al (2009) Coronary plaque quantification by voxel analysis: dual-source MDCT angiography versus intravascular sonography. Am J Roentgenol 192:84–89

    Article  Google Scholar 

  22. Achenbach S, Boehmer K, Pflederer T et al (2010) Influence of slice thickness and reconstruction kernel on the CT attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 4:110–115

    Article  PubMed  Google Scholar 

  23. Cademartiri F, La Grutta L, Runza G et al (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17:1842–1849

    Article  PubMed Central  PubMed  Google Scholar 

  24. Schroeder S, Kopp AF, Ohnesorge B et al (2001) Accuracy and reliability of quantitative measurements in coronary arteries by multi-slice computed tomography: experimental and initial clinical results. Clin Radiol 56:466–474

    Article  CAS  PubMed  Google Scholar 

  25. Kristanto W, van Ooijen PMA, Jansen-van der Weide MC, Vliegenthart R, Oudkerk M (2013) A meta analysis and hierarchical classification of HU-based atherosclerotic plaque characterization criteria. PLoS One 8:e73460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Johnson TR, Krauss B, Sedlmar M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  27. Olsen S, Gooch B (2011) Image simplifications and vectorization. In: Spencer SN (ed) NPAR’ 11 proceedings of the ACM SIGGRAPH/Eurographics symposium on non-photorealistic animation and rendering, ACM, New York, pp 65–74

  28. Zeng GL, Allred RJ (2009) Partitioned Image Filtering for Reduction of the Gibbs Phenomenon. J Nucl Med Technol 37:96–100

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Estelle Noach in providing extensive remarks on the manuscript.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. A. van Ooijen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristanto, W., Tuncay, V., Vliegenthart, R. et al. Correction of lumen contrast-enhancement influence on non-calcified coronary atherosclerotic plaque quantification on CT. Int J Cardiovasc Imaging 31, 429–436 (2015). https://doi.org/10.1007/s10554-014-0554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0554-1

Keywords

Navigation