Skip to main content

Advertisement

Log in

Imaging of cardiac and renal perfusion in a rat model with 13N–NH3 micro-PET

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiac dysfunction leads to decreased organ perfusion. We aimed to measure cardiac and renal perfusion simultaneously with the use of 13N–NH3-microPET in different rat models. Ten male Wistar rats underwent sham surgery (n = 5) or permanent coronary artery ligation to induce myocardial infarction (MI, n = 5). Eleven weeks later 13N–NH3-microPET scan was performed to study the cardiac and renal perfusion. Cardiac perfusion was significantly reduced in MI group, directly correlated with ejection fraction and inversely correlated with MI size (r = 0.89; p < 0.001 and r = −0.86; p < 0.001 respectively). Renal perfusion showed a notional 17 % non-significant reduction in MI group when compared to sham (3.44 ± 0.40 vs. 4.12 ± 0.48 ml/g/min). There was a trend towards greater reduction of perfusion in cortical than medullar region. Cortex perfusion was negatively correlated with histological changes. 13N–NH3-microPET may be a potential tool for evaluation of cardiac and renal functional and perfusion changes in presence of cardiac dysfunction in rat models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A et al (2000) Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 2:203–210

    Article  Google Scholar 

  2. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 19:1527–1539

    Article  Google Scholar 

  3. Smilde TD, Damman K, van der Harst P, Navis G, Westenbrink BD, Voors AA et al (2009) Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol 2:121–129

    Article  Google Scholar 

  4. Kilcoyne MM, Schmidt DH, Cannon PJ (1973) Intrarenal blood flow in congestive heart failure. Circulation 4:786–797

    Article  Google Scholar 

  5. Evans RG, Eppel GA, Anderson WP, Denton KM (2004) Mechanisms underlying the differential control of blood flow in the renal medulla and cortex. J Hypertens 8:1439–1451

    Article  Google Scholar 

  6. Kudo T, Fukuchi K, Annala AJ, Chatziioannou AF, Allada V, Dahlbom M et al (2002) Noninvasive measurement of myocardial activity concentrations and perfusion defect sizes in rats with a new small-animal positron emission tomograph. Circulation 1:118–123

    Article  Google Scholar 

  7. Tio RA, Dabeshlim A, Siebelink HM, de Sutter J, Hillege HL, Zeebregts CJ et al (2009) Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med 2:214–219

    Article  Google Scholar 

  8. Nitzsche EU, Choi Y, Killion D, Hoh CK, Hawkins RA, Rosenthal JT et al (1993) Quantification and parametric imaging of renal cortical blood flow in vivo based on Patlak graphical analysis. Kidney Int 5:985–996

    Article  Google Scholar 

  9. Killion D, Nitzsche E, Choi Y, Schelbert H, Rosenthal JT (1993) Positron emission tomography: a new method for determination of renal function. J Urol 3:1064–1068

    Google Scholar 

  10. Chen BC, Germano G, Huang SC, Hawkins RA, Hansen HW, Robert MJ et al (1992) A new noninvasive quantification of renal blood flow with N-13 ammonia, dynamic positron emission tomography, and a two-compartment model. J Am Soc Nephrol 6:1295–1306

    Google Scholar 

  11. Hillege HL (2012) Animal models of cardiorenal syndrome: a review. Heart Fail Rev 17(3):411–420

    Article  PubMed Central  PubMed  Google Scholar 

  12. Westenbrink BD, Lipsic E, van der Meer P, van der Harst P, Oeseburg H, Du Marchie Sarvaas GJ et al (2007) Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 16:2018–2027

    Article  Google Scholar 

  13. Ulu N, Schoemaker RG, Henning RH, Buikema H, Teerlink T, Zijlstra FJ et al (2009) Proteinuria-associated endothelial dysfunction is strain dependent. Am J Nephrol 3:209–217

    Article  Google Scholar 

  14. Van Kerckhoven R, van Veghel R, Saxena PR, Schoemaker RG (2004) Pharmacological therapy can increase capillary density in post-infarction remodeled rat hearts. Cardiovasc Res 3:620–629

    Article  Google Scholar 

  15. Abassi Z, Gurbanov K, Rubinstein I, Better OS, Hoffman A, Winaver J (1998) Regulation of intrarenal blood flow in experimental heart failure: role of endothelin and nitric oxide. Am J Physiol 4(2):F766–F774

    Google Scholar 

  16. Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM (1984) Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res 5:669–675

    Article  Google Scholar 

  17. Norman JT, Fine LG (2006) Intrarenal oxygenation in chronic renal failure. Clin Exp Pharmacol Physiol 10:989–996

    Article  Google Scholar 

  18. Szymanski MK, Kruizinga S, Tio RA, Willemsen ATM, Schäfers MA, Stegger L et al (2012) Use of gated 13N–NH3 micro-PET to examine left ventricular function in rats. Nucl Med Biol 39(5):724–726

    Article  CAS  PubMed  Google Scholar 

  19. Aukland K (1980) Methods for measuring renal blood flow: total flow and regional distribution. Annu Rev Physiol 42:543–555

    Article  CAS  PubMed  Google Scholar 

  20. Green MA, Hutchins GD (2011) Positron emission tomography (PET) assessment of renal perfusion. Semin Nephrol 3:291–299

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riemer H. J. A. Slart.

Additional information

Luis E. Juárez-Orozco and Mariusz K. Szymanski had equal contribution to this manuscript

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juárez-Orozco, L.E., Szymanski, M.K., Hillege, H.L. et al. Imaging of cardiac and renal perfusion in a rat model with 13N–NH3 micro-PET. Int J Cardiovasc Imaging 31, 213–219 (2015). https://doi.org/10.1007/s10554-014-0538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0538-1

Keywords

Navigation