Skip to main content

Advertisement

Log in

Evaluation of extracellular volume fraction thresholds corresponding to myocardial late-gadolinium enhancement using cardiac magnetic resonance

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To establish extracellular volume fraction (ECV) thresholds corresponding to myocardial lesion detected by late-gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging. Fifty-six patients with myocardial infarction or hypertrophic cardiomyopathy underwent LGE, pre- and post-contrast modified Look-Locker inversion recovery (MOLLI) sequences on a 3-T CMR system. Short-axis MOLLI images generated ECV maps of left ventricular (LV) walls. The LGE areas were semi-automatically determined by different signal threshold techniques. The areas of elevated ECV were measured using ECV thresholds of 28–48 %. The LGE areas were compared with the areas of elevated ECV at the corresponding LV levels. The myocardial areas of LGE and elevated ECVs showed a strong and positive correlation (P < 0.01). The LGE threshold, set at two standard deviations above the mean signal from the remote myocardium, corresponded well with the area of ECV >32 %. When using the full width at half-maximum (FWHM) technique, the LGE area corresponded well with the area of ECV >42 or 44 %. By applying particular ECV thresholds, myocardial ECV maps can define myocardial status equivalent to LGE, and definite ECV thresholds may be useful for the straightforward evaluation of myocardial phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002

    Article  CAS  PubMed  Google Scholar 

  2. Mahrholdt H, Wagner A, Judd RM et al (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26(15):1461–1474

    Article  PubMed  Google Scholar 

  3. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  CAS  PubMed  Google Scholar 

  4. Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144

    Article  PubMed  Google Scholar 

  5. Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83(6):1849–1865

    Article  CAS  PubMed  Google Scholar 

  6. Schwartzkopff B, Brehm M, Mundhenke M et al (2000) Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension 36(2):220–225

    Article  CAS  PubMed  Google Scholar 

  7. Tamarappoo BK, John BT, Reinier K et al (2012) Vulnerable myocardial interstitium in patients with isolated left ventricular hypertrophy and sudden cardiac death: a postmortem histological evaluation. J Am Heart Assoc 1(3):e001511

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wong TC, Piehler K, Meier CG et al (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126(10):1206–1216

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fontana M, White SK, Banypersad SM et al (2012) Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 14:88

    Article  PubMed Central  PubMed  Google Scholar 

  10. Coelho-Filho OR, Shah RV, Mitchell R et al (2013) Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation 128(11):1225–1233

    CAS  PubMed  Google Scholar 

  11. Messroghli DR, Radjenovic A, Kozerke S et al (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146

    Article  PubMed  Google Scholar 

  12. Messroghli DR, Plein S, Higgins DM et al (2006) Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution–reproducibility study. Radiology 238(3):1004–1012

    Article  PubMed  Google Scholar 

  13. Ugander M, Oki AJ, Hsu LY et al (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33(10):1268–1278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu S, Han J, Nacif MS et al (2012) Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson 14:90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  16. Flett AS, Westwood MA, Davies LC et al (2009) The prognostic implications of cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2(3):243–250

    Article  PubMed  Google Scholar 

  17. Schmidt A, Azevedo CF, Cheng A et al (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115(15):2006–2014

    Article  PubMed Central  PubMed  Google Scholar 

  18. Skardal K, Rolim NP, Haraldseth O et al (2013) Late gadolinium enhancement in the assessment of the infarcted mouse heart: a longitudinal comparison with manganese-enhanced MRI. J Magn Reson Imaging 38(6):1388–1394

  19. Ellims AH, Iles LM, Ling LH et al (2012) Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson 14:76

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yan AT, Shayne AJ, Brown KA et al (2006) Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114(1):32–39

    Article  PubMed  Google Scholar 

  21. Heidary S, Patel H, Chung J et al (2010) Quantitative tissue characterization of infarct core and border zone in patients with ischemic cardiomyopathy by magnetic resonance is associated with future cardiovascular events. J Am Coll Cardiol 55(24):2762–2768

    Article  PubMed  Google Scholar 

  22. Todiere G, Aquaro GD, Piaggi P et al (2012) Progression of myocardial fibrosis assessed with cardiac magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 60(10):922–929

    Article  PubMed  Google Scholar 

  23. Flett AS, Hasleton J, Cook C et al (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging 4(2):150–156

    Article  PubMed  Google Scholar 

  24. Kellman P, Wilson JR, Xue H et al (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kellman P, Wilson JR, Xue H et al (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wong TC, Piehler KM, Kang IA et al (2013) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35(10):657–664

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Wook Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S.H., Choi, EY., Park, C.H. et al. Evaluation of extracellular volume fraction thresholds corresponding to myocardial late-gadolinium enhancement using cardiac magnetic resonance. Int J Cardiovasc Imaging 30 (Suppl 2), 137–144 (2014). https://doi.org/10.1007/s10554-014-0489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0489-6

Keywords

Navigation