Skip to main content
Log in

Prognostic significance of dilated inferior vena cava in advanced decompensated heart failure

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Dilated inferior vena cava (IVC) is prevalent among patients with heart failure (HF), but whether its presence predicts worsening renal function (WRF) or adverse outcomes is unclear. This cohort study analyzed patients with left ventricular ejection fraction <40 % and repeated hospitalizations (≥2 times) for HF between August 2009 and August 2011. The study endpoints were death and HF re-hospitalization. Among baseline parameters, IVC diameter was the most powerful predictor for the development of WRF (area under the curve = 0.795, cut-off value = 20.5 mm). During the 2-year follow-up, 36 patients (49 %) were re-hospitalized for HF and 14 patients (19 %) died. The event rates were significantly greater in the WRF group than in the non-WRF group (71 vs. 30 %, P < 0.001 for HF re-hospitalization; 29 vs. 10 %, P = 0.03 for death). In Cox regression model, the risk of combined end-points was increased in patients with aging, elevated blood urine nitrogen, IVC >21 mm, and WRF. When adjusted for confounding factors, IVC >21 mm [hazard ratio (HR) 3.73, 95 % confidence interval (CI) 1.66–8.34] and WRF (HR 2.68, 95 % CI 1.07–6.75) were significant predictors for adverse outcomes. In patients with advanced decompensated HF, dilated IVC (>21 mm) predicted the development of WRF and could be a predictor for adverse outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heywood JT (2004) The cardiorenal syndrome: lessons from the ADHERE database and treatment options. Heart Fail Rev 9(3):195–201

    Article  PubMed  Google Scholar 

  2. McAlister FA et al (2004) Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation 109(8):1004–1009

    Article  PubMed  Google Scholar 

  3. Ronco C et al (2008) Cardiorenal syndrome. J Am Coll Cardiol 52(19):1527–1539

    Article  PubMed  Google Scholar 

  4. Firth JD et al (1988) Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1(8593):1033–1035

    Article  PubMed  CAS  Google Scholar 

  5. Winton FR (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72(1):49–61

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Nohria A et al (2008) Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol 51(13):1268–1274

    Article  PubMed  Google Scholar 

  7. Rudski LG et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23(7):685–713 (quiz 86–88)

    Article  PubMed  Google Scholar 

  8. Singh JP et al (1999) Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol 83(6):897–902

    Article  PubMed  CAS  Google Scholar 

  9. Yock PG et al (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70(4):657–662

    Article  PubMed  CAS  Google Scholar 

  10. Currie PJ et al (1985) Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol 6(4):750–756

    Article  PubMed  CAS  Google Scholar 

  11. Levey AS et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145(4):247–254

    Article  PubMed  CAS  Google Scholar 

  12. Krumholz HM et al (2000) Correlates and impact on outcomes of worsening renal function in patients > or =65 years of age with heart failure. Am J Cardiol 85(9):1110–1113

    Article  PubMed  CAS  Google Scholar 

  13. Gottlieb SS et al (2002) The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail 8(3):136–141

    Article  PubMed  Google Scholar 

  14. Forman DE et al (2004) Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol 43(1):61–67

    Article  PubMed  Google Scholar 

  15. Simonneau G et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(1 Suppl):S43–S54

    Article  PubMed  Google Scholar 

  16. Filippatos G et al (2007) Prognostic value of blood urea nitrogen in patients hospitalized with worsening heart failure: insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) study. J Card Fail 13(5):360–364

    Article  PubMed  Google Scholar 

  17. Fonarow GC et al (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA 293(5):572–580

    Article  PubMed  CAS  Google Scholar 

  18. Aronson D et al (2004) Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure. Am J Med 116(7):466–473

    Article  PubMed  CAS  Google Scholar 

  19. Blair JE et al (2011) Changes in renal function during hospitalization and soon after discharge in patients admitted for worsening heart failure in the placebo group of the EVEREST trial. Eur Heart J 32(20):2563–2572

    Article  PubMed  Google Scholar 

  20. Pfister R et al (2011) NT-pro-BNP predicts worsening renal function in patients with chronic systolic heart failure. Intern Med J 41(6):467–472

    Article  PubMed  CAS  Google Scholar 

  21. Schrier RW (2006) Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol 47(1):1–8

    Article  PubMed  Google Scholar 

  22. Schrier RW et al (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341(8):577–585

    Article  PubMed  CAS  Google Scholar 

  23. Leithe ME et al (1984) Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation 69(1):57–64

    Article  PubMed  CAS  Google Scholar 

  24. Yasue H et al (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90(1):195–203

    Article  PubMed  CAS  Google Scholar 

  25. Mukoyama M et al (1990) Increased human brain natriuretic peptide in congestive heart failure. N Engl J Med 323(11):757–758

    Article  PubMed  CAS  Google Scholar 

  26. Tsutamoto T et al (2006) Relationship between renal function and plasma brain natriuretic peptide in patients with heart failure. J Am Coll Cardiol 47(3):582–586

    Article  PubMed  CAS  Google Scholar 

  27. Uthoff H et al (2011) Central venous pressure and impaired renal function in patients with acute heart failure. Eur J Heart Fail 13(4):432–439

    Article  PubMed  Google Scholar 

  28. Damman K et al (2010) Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail 12:974–982

    Article  PubMed  Google Scholar 

  29. Damman K et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53(7):582–588

    Article  PubMed  Google Scholar 

  30. Damman K et al (2007) Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 9(9):872–878

    Article  PubMed  Google Scholar 

  31. Pellicori P et al (2013) IVC diameter in patients with chronic heart failure: relationships and prognostic significance. JACC Cardiovasc Imaging 6(1):16–28

    Article  PubMed  Google Scholar 

  32. Damman K et al (2007) Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail 13(8):599–608

    Article  PubMed  Google Scholar 

  33. Mintz GS et al (1981) Reat-time inferior vena caval ultrasonography: normal and abnormal findings and its use in assessing right-heart function. Circulation 64(5):1018–1025

    Article  PubMed  CAS  Google Scholar 

  34. Moreno FL et al (1984) Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol 53(4):579–585

    Article  PubMed  CAS  Google Scholar 

  35. Kircher BJ et al (1990) Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 66(4):493–496

    Article  PubMed  CAS  Google Scholar 

  36. Jue J et al (1992) Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr 5(6):613–619

    Article  PubMed  CAS  Google Scholar 

  37. Bendjelid K et al (2002) Correlation between measured inferior vena cava diameter and right atrial pressure depends on the echocardiographic method used in patients who are mechanically ventilated. J Am Soc Echocardiogr 15(9):944–949

    Article  PubMed  Google Scholar 

  38. Brennan JM et al (2007) Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 20(7):857–861

    Article  PubMed  Google Scholar 

  39. Sznajder JI et al (1986) Central vein catheterization. Failure and complication rates by three percutaneous approaches. Arch Intern Med 146(2):259–261

    Article  PubMed  CAS  Google Scholar 

  40. Merrer J et al (2001) Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 286(6):700–707

    Article  PubMed  CAS  Google Scholar 

  41. Kimura BJ et al (2007) Value of a cardiovascular limited ultrasound examination using a hand-carried ultrasound device on clinical management in an outpatient medical clinic. Am J Cardiol 100(2):321–325

    Article  PubMed  Google Scholar 

  42. Jang T et al (2004) Ultrasonography of the internal jugular vein in patients with dyspnea without jugular venous distention on physical examination. Ann Emerg Med 44(2):160–168

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HF., Hsu, LA., Chang, CJ. et al. Prognostic significance of dilated inferior vena cava in advanced decompensated heart failure. Int J Cardiovasc Imaging 30, 1289–1295 (2014). https://doi.org/10.1007/s10554-014-0468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0468-y

Keywords

Navigation