Skip to main content

Advertisement

Log in

Low-carbohydrate diet versus euglycemic hyperinsulinemic clamp for the assessment of myocardial viability with 18F-fluorodeoxyglucose-PET: a pilot study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Positron emission tomography with 18F-fluorodeoxyglucose (FDG-PET) is considered the gold standard for myocardial viability. A pilot study was undertaken to compare FDG-PET using euglycemic hyperinsulinemic clamp before 18F-fluorodeoxyglucose (18F-FDG) administration (PET-CLAMP) with a new proposed technique consisting of a 24-h low-carbohydrate diet before 18F-FDG injection (PET-DIET), for the assessment of hypoperfused but viable myocardium (hibernating myocardium). Thirty patients with previous myocardial infarction were subjected to rest 99mTc-sestamibi-SPECT and two 18F-FDG studies (PET-CLAMP and PET-DIET). Myocardial tracer uptake was visually scored using a 5-point scale in a 17-segment model. Hibernating myocardium was defined as normal or mildly reduced metabolism (18F-FDG uptake) in areas with reduced perfusion (99mTc-sestamibi uptake) since 18F-FDG uptake was higher than the degree of hypoperfusion–perfusion/metabolism mismatch indicating a larger flow defect. PET-DIET identified 79 segments and PET-CLAMP 71 as hibernating myocardium. Both methods agreed in 61 segments (agreement = 94.5 %, κ = 0.78). PET-DIET identified 230 segments and PET-CLAMP 238 as nonviable. None of the patients had hypoglycemia after DIET, while 20 % had it during CLAMP. PET-DIET compared with PET-CLAMP had a good correlation for the assessment of hibernating myocardium. To our knowledge, these data provide the first evidence of the possibility of myocardial viability assessment with this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL (1991) Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 83:26–37

    Article  CAS  PubMed  Google Scholar 

  2. Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V (1998) [18F]fluorodeoxyglucose single photon emission computed tomography: can it replace PET and thallium SPECT for the assessment of myocardial viability? Circulation 97:843–850

    Article  CAS  PubMed  Google Scholar 

  3. Tamaki N, Kawamoto M, Tadamura E, Magata Y, Yonekura Y, Nohara R et al (1995) Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation 91:1697–1705

    Article  CAS  PubMed  Google Scholar 

  4. Alexanderson E, Ricalde A, Meave A (2005) Myocardial viability, its importance for the therapeutic decision. Arch Cardiol Mex 75:13–22

    PubMed  Google Scholar 

  5. Travin MI, Bergmann SR (2005) Assessment of myocardial viability. Semin Nucl Med 35:2–16

    Article  PubMed  Google Scholar 

  6. Partington SL, Kwong RY, Dorbala S (2011) Multimodality imaging in the assessment of myocardial viability. Heart Fail Rev 16:381–395

    Article  PubMed  Google Scholar 

  7. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG (2010) Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J 31:2984–2995

    Article  PubMed  Google Scholar 

  8. Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn HY, Lehner S et al (2013) The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging 29:1645–1653

    Article  PubMed  Google Scholar 

  9. Knuuti J, Schelbert HR, Bax JJ (2002) The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 29:1257–1266

    Article  PubMed  Google Scholar 

  10. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32:375–410

    Article  PubMed  Google Scholar 

  11. Bax JJ, Visser FC, Raymakers PG, Van Lingen A, Cornel JH, Huitink JM et al (1997) Cardiac 18F-FDG-SPET studies in patients with non-insulin-dependent diabetes mellitus during hyperinsulinaemic euglycaemic clamping. Nucl Med Commun 18:200–206

    Article  CAS  PubMed  Google Scholar 

  12. Bax JJ, Visser FC, Poldermans D, van Lingen A, Elhendy A, Boersma E et al (2002) Feasibility, safety and image quality of cardiac FDG studies during hyperinsulinaemic-euglycaemic clamping. Eur J Nucl Med Mol Imaging 29:452–457

    Article  CAS  PubMed  Google Scholar 

  13. Yoshinaga K, Morita K, Yamada S, Komuro K, Katoh C, Ito Y et al (2001) Low-dose dobutamine electrocardiograph-gated myocardial SPECT for identifying viable myocardium: comparison with dobutamine stress echocardiography and PET. J Nucl Med 42:838–844

    CAS  PubMed  Google Scholar 

  14. Kuhl HP, Lipke CS, Krombach GA, Katoh M, Battenberg TF, Nowak B et al (2006) Assessment of reversible myocardial dysfunction in chronic ischaemic heart disease: comparison of contrast-enhanced cardiovascular magnetic resonance and a combined positron emission tomography-single photon emission computed tomography imaging protocol. Eur Heart J 27:846–853

    Article  PubMed  Google Scholar 

  15. Fallavollita JA, Luisi AJ, Yun E, deKemp RA, Canty JM (2010) An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J Nucl Cardiol 17:637–645

    Article  PubMed  Google Scholar 

  16. Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA et al (2007) Low-carbohydrate nutrition and metabolism. Am J Clin Nutr 86:276–284

    CAS  PubMed  Google Scholar 

  17. Maki M, Luotolahti M, Nuutila P, Iida H, Voipio-Pulkki LM, Ruotsalainen U et al (1996) Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation 93:1658–1666

    Article  CAS  PubMed  Google Scholar 

  18. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D et al (2009) PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 16:651–651

    Google Scholar 

  19. Williams G, Kolodny GM (2008) Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. Am J Roentgenol 190:W151–W156

    Article  Google Scholar 

  20. Bacharach SL, Bax JJ, Case J, Delbeke D, Kurdziel KA, Martin WH et al (2003) PET myocardial glucose metabolism and perfusion imaging: part 1-guidelines for data acquisition and patient preparation. J Nucl Cardiol 10:543–556

    Article  PubMed  Google Scholar 

  21. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  22. Sim J, Wright CC (2005) The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther 85:257–268

    PubMed  Google Scholar 

  23. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108:1095–1100

    Article  PubMed  Google Scholar 

  24. vom Dahl J, Altehoefer C, Sheehan FH, Buechin P, Uebis R, Messmer BJ et al (1996) Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 28:948–958

    Article  CAS  PubMed  Google Scholar 

  25. Schroder O, Hor G, Hertel A, Baum RP (1998) Combined hyperinsulinaemic glucose clamp and oral acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: comparative results. Nucl Med Commun 19:867–874

    Article  CAS  PubMed  Google Scholar 

  26. Schinkel AF, Poldermans D, Rizzello V, van Domburg RT, Valkema R, Elhendy A et al (2006) Impact of diabetes mellitus on prediction of clinical outcome after coronary revascularization by 18F-FDG SPECT in patients with ischemic left ventricular dysfunction. J Nucl Med 47:68–73

    PubMed  Google Scholar 

  27. Cleland JG, Calvert M, Freemantle N, Arrow Y, Ball SG, Bonser RS et al (2011) The heart failure revascularisation trial (HEART). Eur J Heart Fail 13:227–233

    Article  PubMed  Google Scholar 

  28. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P et al (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364:1617–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gropler RJ, Siegel BA, Lee KJ, Moerlein SM, Perry DJ, Bergmann SR et al (1990) Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 31:1749–1756

    CAS  PubMed  Google Scholar 

  30. Gerber BL, Ordoubadi FF, Wijns W, Vanoverschelde JL, Knuuti MJ, Janier M et al (2001) Positron emission tomography using (18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of (18)F-fluoro-deoxyglucose positron emission tomography for the detection of myocardial viability. Eur Heart J 22:1691–1701

    Article  CAS  PubMed  Google Scholar 

  31. Camici PG, Prasad SK, Rimoldi OE (2008) Stunning, hibernation, and assessment of myocardial viability. Circulation 117:103–114

    Article  PubMed  Google Scholar 

  32. Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Cornel JH et al (1997) Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 24:35–41

    Article  CAS  PubMed  Google Scholar 

  33. Astrup A, Meinert Larsen T, Harper A (2004) Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss? Lancet 364:897–899

    Article  PubMed  Google Scholar 

  34. Wiggers H, Norrelund H, Nielsen SS, Andersen NH, Nielsen-Kudsk JE, Christiansen JS et al (2005) Influence of insulin and free fatty acids on contractile function in patients with chronically stunned and hibernating myocardium. Am J Physiol Heart Circ Physiol 289:H938–H946

    Article  CAS  PubMed  Google Scholar 

  35. Monti LD, Lucignani G, Landoni C, Moresco RM, Piatti P, Stefani I et al (1995) Myocardial glucose uptake evaluated by positron emission tomography and fluorodeoxyglucose during hyperglycemic clamp in IDDM patients. Role of free fatty acid and insulin levels. Diabetes 44:537–542

    Article  CAS  PubMed  Google Scholar 

  36. Giedd KN, Bergmann SR (2011) Fatty acid imaging of the heart. Curr Cardiol Rep 13:121–131

    Article  PubMed  Google Scholar 

  37. Abozguia K, Shivu GN, Ahmed I, Phan TT, Frenneaux MP (2009) The heart metabolism: pathophysiological aspects in ischaemia and heart failure. Curr Pharm Des 15:827–835

    Article  CAS  PubMed  Google Scholar 

  38. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  39. Burt RW, Perkins OW, Oppenheim BE, Schauwecker DS, Stein L, Wellman HN et al (1995) Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 36:176–179

    CAS  PubMed  Google Scholar 

  40. Kuhl HP, Beek AM, van der Weerdt AP, Hofman MB, Visser CA, Lammertsma AA et al (2003) Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 41:1341–1348

    Article  PubMed  Google Scholar 

  41. Slart RH, Bax JJ, Sluiter WJ, van Veldhuisen DJ, Jager PL (2004) Added value of attenuation-corrected Tc-99m tetrofosmin SPECT for the detection of myocardial viability: comparison with FDG SPECT. J Nucl Cardiol 11:689–696

    Article  PubMed  Google Scholar 

  42. Tamaki N, Ohtani H, Yamashita K, Magata Y, Yonekura Y, Nohara R et al (1991) Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 32:673–678

    CAS  PubMed  Google Scholar 

  43. Schinkel AF, Poldermans D, Elhendy A, Bax JJ (2007) Assessment of myocardial viability in patients with heart failure. J Nucl Med 48:1135–1146

    Article  PubMed  Google Scholar 

  44. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM (1997) Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 30:1451–1460

    Article  CAS  PubMed  Google Scholar 

  45. Wu YW, Tadamura E, Kanao S, Yamamuro M, Marui A, Komeda M et al (2007) Myocardial viability by contrast-enhanced cardiovascular magnetic resonance in patients with coronary artery disease: comparison with gated single-photon emission tomography and FDG position emission tomography. Int J Cardiovasc Imaging 23:757–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by financial assistance of FAPESP—The State of São Paulo Research Foundation—process 04/13824-2.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filadelfo Rodrigues Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, J., Rodrigues Filho, F., Izaki, M. et al. Low-carbohydrate diet versus euglycemic hyperinsulinemic clamp for the assessment of myocardial viability with 18F-fluorodeoxyglucose-PET: a pilot study. Int J Cardiovasc Imaging 30, 415–423 (2014). https://doi.org/10.1007/s10554-013-0324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-013-0324-5

Keywords

Navigation