Skip to main content

Advertisement

Log in

Improved aortic enhancement in CT angiography using slope-based triggering with table speed optimization: a pilot study

  • Original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To assess whether a scan triggering technique based on the slope of the time-attenuation curve combined with table speed optimization may improve arterial enhancement in aortic CT angiography compared to conventional threshold-based triggering techniques. Measurements of arterial enhancement were performed in a physiologic flow phantom over a range of simulated cardiac outputs (2.2–8.1 L/min) using contrast media boluses of 80 and 150 mL injected at 4 mL/s. These measurements were used to construct computer models of aortic attenuation in CT angiography, using cardiac output, aortic diameter, and CT table speed as input parameters. In-plane enhancement was calculated for normal and aneurysmal aortic diameters. Calculated arterial enhancement was poor (<150 HU) along most of the scan length using the threshold-based triggering technique for low cardiac outputs and the aneurysmal aorta model. Implementation of the slope-based triggering technique with table speed optimization improved enhancement in all scenarios and yielded good- (>200 HU; 13/16 scenarios) to excellent-quality (>300 HU; 3/16 scenarios) enhancement in all cases. Slope-based triggering with table speed optimization may improve the technical quality of aortic CT angiography over conventional threshold-based techniques, and may reduce technical failures related to low cardiac output and slow flow through an aneurysmal aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45(Suppl S):S5–67. doi:10.1016/j.jvs.2006.12.037

    Article  PubMed  Google Scholar 

  2. Foley WD, Stonely T (2010) CT angiography of the lower extremities. Radiol Clin North Am 48(2):367–396. doi:10.1016/j.rcl.2010.02.008

    Article  PubMed  Google Scholar 

  3. Hiatt MD, Fleischmann D, Hellinger JC, Rubin GD (2005) Angiographic imaging of the lower extremities with multidetector CT. Radiol Clin North Am 43(6):1119–1127. doi:10.1016/j.rcl.2005.08.008

    Article  PubMed  Google Scholar 

  4. Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC (2001) Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology 221(1):146–158

    Article  PubMed  CAS  Google Scholar 

  5. Hoang JK, Martinez S, Hurwitz LM (2009) MDCT angiography of thoracic aorta endovascular stent-grafts: pearls and pitfalls. AJR Am J Roentgenol 192(2):515–524. doi:10.2214/AJR.08.1365

    Article  PubMed  Google Scholar 

  6. Iezzi R, Cotroneo AR, Marano R, Filippone A, Storto ML (2008) Endovascular treatment of thoracic aortic diseases: follow-up and complications with multi-detector computed tomography angiography. Eur J Radiol 65(3):365–376. doi:10.1016/j.ejrad.2007.09.022

    Article  PubMed  Google Scholar 

  7. Kumamaru KK, Hoppel BE, Mather RT, Rybicki FJ (2010) CT angiography: current technology and clinical use. Radiol Clin North Am 48(2):213–235. doi:10.1016/j.rcl.2010.02.006

    Article  PubMed  Google Scholar 

  8. Bae KT (2003) Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227(3):809–816. doi:10.1148/radiol.2273020102

    Article  PubMed  Google Scholar 

  9. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61. doi:10.1148/radiol.10090908

    Article  PubMed  Google Scholar 

  10. Cademartiri F, Nieman K, van der Lugt A, Raaijmakers RH, Mollet N, Pattynama PM, de Feyter PJ, Krestin GP (2004) Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233(3):817–823. doi:10.1148/radiol.2333030668

    Article  PubMed  Google Scholar 

  11. Dewey M, Hamm B (2007) Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease. Eur Radiol 17(5):1301–1309. doi:10.1007/s00330-006-0439-3

    Article  PubMed  Google Scholar 

  12. Cademartiri F, van der Lugt A, Luccichenti G, Pavone P, Krestin GP (2002) Parameters affecting bolus geometry in CTA: a review. J Comput Assist Tomogr 26(4):598–607

    Article  PubMed  Google Scholar 

  13. Mahnken AH, Henzler D, Klotz E, Hennemuth A, Wildberger JE, Gunther RW (2004) Determination of cardiac output with multislice spiral computed tomography: a validation study. Invest Radiol 39(8):451–454

    Article  PubMed  Google Scholar 

  14. Fleischmann D (2003) Use of high concentration contrast media: principles and rationale-vascular district. Eur J Radiol 45(Suppl 1):S88–93

    Article  PubMed  Google Scholar 

  15. Fleischmann D, Hallett RL, Rubin GD (2006) CT angiography of peripheral arterial disease. J Vasc Interv Radiol 17(1):3–26. doi:10.1097/01.RVI.0000191361.02857.DE

    Article  PubMed  Google Scholar 

  16. Owen AR, Roditi GH (2011) Peripheral arterial disease: the evolving role of non-invasive imaging. Postgrad Med J 87(1025):189–198. doi:10.1136/pgmj.2009.082040

    Article  PubMed  CAS  Google Scholar 

  17. Sakai S, Yabuuchi H, Chishaki A, Okafuji T, Matsuo Y, Kamitani T, Setoguchi T, Honda H (2010) Effect of cardiac function on aortic peak time and peak enhancement during coronary CT angiography. Eur J Radiol 75(2):173–177. doi:10.1016/j.ejrad.2009.04.022

    Article  PubMed  Google Scholar 

  18. Coursey CA, Nelson RC, Weber PW, Howle LE, Nichols EB, Marin D, DeLong D (2009) Contrast material administration protocols for 64-MDCT angiography: altering volume and rate and use of a saline chaser to better match the imaging window—physiologic phantom study. AJR Am J Roentgenol 193(6):1568–1575. doi:10.2214/AJR.09.2670

    Article  PubMed  Google Scholar 

  19. Milnor WR (1990) Cardiovascular physiology. Oxford University Press, New York

    Google Scholar 

  20. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 207(3):647–655

    PubMed  CAS  Google Scholar 

  21. Guyton AC (1963) Cardiac output and its regulation. Saunders, Philadelphia

    Google Scholar 

  22. Best CH, Taylor NB, West JB (1991) Best and Taylor’s physiological basis of medical practice, 12th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  23. Cantisani V, Ricci P, Grazhdani H, Napoli A, Fanelli F, Catalano C, Galati G, D’Andrea V, Biancari F, Passariello R (2011) Prospective comparative analysis of colour-Doppler ultrasound, contrast-enhanced ultrasound, computed tomography and magnetic resonance in detecting endoleak after endovascular abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 41(2):186–192. doi:10.1016/j.ejvs.2010.10.003

    Article  PubMed  CAS  Google Scholar 

  24. Bobadilla JL, Hoch JR, Leverson GE, Tefera G (2010) The effect of warfarin therapy on endoleak development after endovascular aneurysm repair (EVAR) of the abdominal aorta. J Vasc Surg 52(2):267–271. doi:10.1016/j.jvs.2010.02.290

    Article  PubMed  Google Scholar 

  25. Siriapisith T, Wasinrat J, Mutirangura P, Ruangsetakit C, Wongwanit C (2010) Optimization of the table speed of lower extremity CT angiography protocols in different patient age groups. J Cardiovasc Comput Tomogr 4(3):173–183. doi:10.1016/j.jcct.2010.03.011

    Article  PubMed  Google Scholar 

  26. Goetti R, Baumuller S, Feuchtner G, Stolzmann P, Karlo C, Alkadhi H, Leschka S (2010) High-pitch dual-source CT angiography of the thoracic and abdominal aorta: is simultaneous coronary artery assessment possible? AJR Am J Roentgenol 194(4):938–944. doi:10.2214/AJR.09.3482

    Article  PubMed  Google Scholar 

  27. Hardie AD, Mayes N, Boulter DJ (2011) Use of high-pitch dual-source computed tomography of the abdomen and pelvis to markedly reduce scan time: clinical feasibility study. J Comput Assist Tomogr 35(3):353–355. doi:10.1097/RCT.0b013e31821a02c8

    Article  PubMed  Google Scholar 

  28. Schindera ST, Tock I, Marin D, Nelson RC, Raupach R, Hagemeister M, von Allmen G, Vock P, Szucs-Farkas Z (2010) Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: an in vitro and in vivo study. Radiology 256(2):528–535. doi:10.1148/radiol.10092086

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa R. Bashir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, M.R., Weber, P.W., Husarik, D.B. et al. Improved aortic enhancement in CT angiography using slope-based triggering with table speed optimization: a pilot study. Int J Cardiovasc Imaging 28, 1533–1543 (2012). https://doi.org/10.1007/s10554-011-9945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9945-8

Keywords

Navigation