Skip to main content
Log in

Prognostic value of combined magnetic resonance myocardial perfusion imaging and late gadolinium enhancement

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Late gadolinium enhancement (LGE) and myocardial perfusion study by cardiac magnetic resonance (CMR) have a diagnostic and prognostic value in patients with suspected coronary artery disease (CAD). The purpose of this study was to determine the prognostic value of combined myocardial perfusion CMR and LGE in patients with known or suspected CAD. We studied patients with known or suspected CAD. All patients underwent CMR for functional study, myocardial perfusion and LGE. Myocardial ischemia by CMR was defined as a perfusion defect in patients without LGE or a perfusion defect beyond the LGE area. Patients were followed up for cardiovascular outcomes including hard cardiac events (cardiac death or non-fatal myocardial infarction) and major adverse cardiac events (MACE) which included cardiac death, non-fatal myocardial infarction, hospitalization for unstable angina, and heart failure. There were a total of 587 men and 645 women. Average age was 64.6 ± 11.1 years. LGE was detected in 326 patients (26.5%). Myocardial ischemia by CMR was detected in 423 patients (34.3%). Average follow-up duration was 34.9 ± 15.6 months. Univariate analysis showed that age, diabetes, use of beta blocker, left ventricular ejection fraction, left ventricular mass, wall motion abnormality, LGE, and myocardial ischemia are predictors for hard cardiac events and MACE. Multivariable analysis revealed that myocardial ischemia was the strongest predictor for hard cardiac events and MACE. Other independent predictors were age, use of beta blocker, and left ventricular mass. Myocardial ischemia by CMR has an incremental prognostic value for cardiac events in patients with known or suspected CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gibbons RJ, Araoz PA, Williamson EE (2010) The year in cardiac imaging. J Am Coll Cardiol 55(5):483–495

    Article  PubMed  Google Scholar 

  2. Wu KC (2009) Variation on a theme: CMR as the “one-stop shop” for risk stratification after infarction? JACC Cardiovasc Imaging 2(7):843–845

    Article  PubMed  Google Scholar 

  3. Kim HW, Farzaneh-Far A, Kim RJ (2009) Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications. J Am Coll Cardiol 55(1):1–16

    Article  PubMed  Google Scholar 

  4. Bulow H, Klein C, Kuehn I et al (2005) Cardiac magnetic resonance imaging: long term reproducibility of the late enhancement signal in patients with chronic coronary artery disease. Heart 91(9):1158–1163

    Article  PubMed  CAS  Google Scholar 

  5. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  PubMed  CAS  Google Scholar 

  6. Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113(23):2733–2743

    Article  PubMed  Google Scholar 

  7. Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51(25):2414–2421

    Article  PubMed  Google Scholar 

  8. Nagel E (2009) Taking the last hurdles: magnetic resonance myocardial perfusion imaging. JACC Cardiovasc Imaging 2(4):434–436

    Article  PubMed  Google Scholar 

  9. Costa MA, Shoemaker S, Futamatsu H et al (2007) Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 50(6):514–522

    Article  PubMed  Google Scholar 

  10. Chiribiri A, Bettencourt N, Nagel E (2009) Cardiac magnetic resonance stress testing: results and prognosis. Curr Cardiol Rep 11(1):54–60

    Article  PubMed  Google Scholar 

  11. Hamon M, Fau G, Nee G et al (2010) Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reason 12(1):29

    Article  Google Scholar 

  12. Doesch C, Seeger A, Doering J et al (2009) Risk stratification by adenosine stress cardiac magnetic resonance in patients with coronary artery stenoses of intermediate angiographic severity. JACC Cardiovasc Imaging 2(4):424–433

    Article  PubMed  Google Scholar 

  13. Mahrholdt H, Klem I, Sechtem U (2007) Cardiovascular MRI for detection of myocardial viability and ischaemia. Heart 93(1):122–129

    Article  PubMed  CAS  Google Scholar 

  14. Klem I, Heitner JF, Shah DJ et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47(8):1630–1638

    Article  PubMed  Google Scholar 

  15. Boxt LM (1999) Cardiac MR imaging: a guide for the beginner. Radiographics 19(4):1009–1025 (discussion 1026–1008)

    PubMed  CAS  Google Scholar 

  16. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  17. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361(9355):374–379

    Article  PubMed  Google Scholar 

  18. Alpert JS, Thygesen K, Antman E et al (2000) Myocardial infarction redefined—a consensus document of the joint European society of cardiology/American College of cardiology committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36(3):959–969

    Article  PubMed  CAS  Google Scholar 

  19. Krittayaphong R, Saiviroonporn P, Boonyasirinant T et al (2007) Accuracy of visual assessment in the detection and quantification of myocardial scar by delayed-enhancement magnetic resonance imaging. J Med Assoc Thai 90(suppl 2):1–8

    PubMed  Google Scholar 

  20. Nagel E, Lima JA, George RT et al (2009) Newer methods for noninvasive assessment of myocardial perfusion: cardiac magnetic resonance or cardiac computed tomography? JACC Cardiovasc Imaging 2(5):656–660

    Article  PubMed  Google Scholar 

  21. Ingkanisorn WP, Kwong RY, Bohme NS et al (2006) Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 47(7):1427–1432

    Article  PubMed  Google Scholar 

  22. Kwong RY, Sattar H, Wu H et al (2008) Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 118(10):1011–1020

    Article  PubMed  Google Scholar 

  23. Schmidt A, Azevedo CF, Cheng A et al (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115(15):2006–2014

    Article  PubMed  Google Scholar 

  24. Nazarian S, Bluemke DA, Lardo AC et al (2005) Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112(18):2821–2825

    Article  PubMed  Google Scholar 

  25. Yan AT, Shayne AJ, Brown KA et al (2006) Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114(1):32–39

    Article  PubMed  Google Scholar 

  26. Bansch D, Oyang F, Antz M et al (2003) Successful catheter ablation of electrical storm after myocardial infarction. Circulation 108(24):3011–3016

    Article  PubMed  Google Scholar 

  27. Tarakji KG, Brunken R, McCarthy PM et al (2006) Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation 113(2):230–237

    Article  PubMed  Google Scholar 

  28. Hachamovitch R, Di Carli MF (2007) Nuclear cardiology will remain the “gatekeeper” over CT angiography. J Nucl Cardiol 14(5):634–644

    Article  PubMed  Google Scholar 

  29. Lee DC, Simonetti OP, Harris KR et al (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110(1):58–65

    Article  PubMed  Google Scholar 

  30. Rieber J, Huber A, Erhard I et al (2006) Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 27(12):1465–1471

    Article  PubMed  Google Scholar 

  31. Iskandrian AE (2010) Stress-only myocardial perfusion imaging a new paradigm. J Am Coll Cardiol 55(3):231–233

    Article  PubMed  Google Scholar 

  32. Krittayaphong R, Boonyasirinant T, Saiviroonporn P et al (2009) Myocardial perfusion cardiac magnetic resonance for the diagnosis of coronary artery disease: do we need rest images? Int J Cardiovasc Imaging 25(Suppl 1):139–148

    Article  PubMed  Google Scholar 

  33. Patel AR, Antkowiak PF, Nandalur KR et al (2010) Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol 56(7):561–569

    Article  PubMed  Google Scholar 

  34. Schwitter J, Wacker CM, van Rossum AC et al (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29(4):480–489

    Article  PubMed  Google Scholar 

  35. Klein C, Gebker R, Kokocinski T et al (2008) Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. J Cardiovasc Magn Reason 10:45

    Article  Google Scholar 

  36. Steel K, Broderick R, Gandla V et al (2009) Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation 120(14):1390–1400

    Article  PubMed  Google Scholar 

  37. Hombach V, Grebe O, Merkle N et al (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26(6):549–557

    Article  PubMed  Google Scholar 

  38. Korosoglou G, Elhmidi Y, Steen H et al (2010) Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1, 493 consecutive patients: assessment of myocardial wall motion and perfusion. J Am Coll Cardiol 56(15):1225–1234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Pairash Saiviroonporn, Ms. Supaporn Nakyen and Mr. Prajak Thanapiboonpol for their technical assistance.

Conflict of interest

There is no conflict of interest involved in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rungroj Krittayaphong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krittayaphong, R., Chaithiraphan, V., Maneesai, A. et al. Prognostic value of combined magnetic resonance myocardial perfusion imaging and late gadolinium enhancement. Int J Cardiovasc Imaging 27, 705–714 (2011). https://doi.org/10.1007/s10554-011-9863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9863-9

Keywords

Navigation